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UNIT-I DISCRETE FOURIER TRANSFORM 

 

 

 

 

 

 

 

 

Introduction: 

Signal: Signal is defined as any physical quantity that varies with time, space or any other independent 

variable. 

System: 

A system is defined as physical device that generates a response or an output signal, for a given input signal.  

X(t) y(t) 

 input output 

where, 

y(t) ----> operation on x(t) 

y(t) = T[x(t)] 

Types of Signal: 

There are two types of signal, that are based on time because the signal basically varies with respect to time, 

they are, 

 Continuous time signal 

 Discrete time signal 

Continuous time signals (CT): 

CT Signals are continuously varied in accordance with the time. 

Example: Sine wave, cosine wave etc. 

 
                           Cosine wave 

Discrete time signals (DT): 

DT signal is defined as at discrete instants of time are known as discrete-time signals. The discrete-time 

signals are continuous in amplitude and discrete in time. They are denoted by x(n). 

Example: 

 
Basic Elements of DSP: 

1. Explain briefly Basic Elements of Digital Signal Processing.   
Digital signal processing system contains following elements are, 

 Analog signal 

 Sample and Hold circuit 

 ADC (Analog to Digital Converter) 

 Filter 

Review of signals and systems, concept of frequency in discrete-time signals, summary of 

analysis & synthesis equations for FT & DTFT, frequency domain sampling, Discrete Fourier 

transform (DFT) - deriving DFT from DTFT, properties of DFT - periodicity, symmetry, circular 

convolution. Linear filtering using DFT. Filtering long data sequences - overlap save and overlap 

add method. Fast computation of DFT - Radix-2 Decimation-in-time (DIT) Fast Fourier 

transform (FFT), Decimation-in-frequency (DIF) Fast Fourier transform (FFT). Linear filtering 

using FFT.  

 

 

 

 

 

 

 

 

 

 

deriving DFT from DTFT, properties of DFT - periodicity, symmetry, circular convolution. 

Linear filtering using DFT. Filtering long data sequences - overlap save and overlap add method. 

Fast computation of DFT - Radix-2 Decimation-in-time (DIT) Fast Fourier transform (FFT), 

Decimation-in-frequency (DIF) Fast Fourier transform (FFT). Linear filtering using FFT.  

 

System 
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 DAC (Digital to Analog Converter) 

 

 

 

 

 Analog signal is nothing but real time signal. It may be speech, video etc. 

 Analog signal (continuous –time signal) is given to sample and hold circuit. 

 After completing the sampling process, the signal is given to ADC block. 

 ADC converts Analog to Digital signal. Then it is given to filter block. This filter removes unwanted 

noise from the signal. Then the output is processed through the channel. 

 In the receiver side (Rx), digital signal is again converted into analog signal. Because analog signal is 

the real time signal and we can understand only analog signal. 

Concepts of frequency in Analog and Digital Signals: (Continuous-time and discrete time signals

 2. Discuss the concepts of frequency in Analog and Digital Signals and its Properties. 

A simple harmonic oscillation is mathematically described by the following continuous-time sinusoidal 

signal. 

𝑥𝑎(𝑡) =  𝐴 𝑐𝑜𝑠 (Ω𝑡 + 𝜃), −∞ < 𝑡 < ∞ 

Where, 

A Amplitude of the sinusoid. 

Ω  Frequency in radian/Seconds; Ω = 2πF 

θ Phase in radians. 

Xa(t)  Analog signal representation. 

In terms of F, eqn(1) can be written as, 

𝑥𝑎(𝑡) =  𝐴 𝑐𝑜𝑠 (2πF𝑡 + 𝜃),−∞ < 𝑡 < ∞ 

 
𝑋(𝑡) =  𝑋(𝑡 + 𝑇) 

Where, 

T Time period in sec. 

t  frequency in Hz. 

X(t)  signal represent after the time period T. frequency ‘f’ satisfies the relationship.  0 ≤ 𝑓 ≤ ∞ 

We can prove that,  𝑥𝑎(𝑡) =  𝐴 cos(Ω𝑡 + 𝜃) 

                                          =  𝐴
1

2
[𝑒𝑗(Ω𝑡+𝜃) +𝑒−𝑗(Ω𝑡+𝜃)] 

   𝑒𝑗(Ω𝑡+𝜃) = cos(Ω𝑡 + 𝜃) + 𝑗𝑠𝑖𝑛(Ω𝑡 + 𝜃) 

 𝑒−𝑗(Ω𝑡+𝜃) = cos(Ω𝑡 + 𝜃) − 𝑗𝑠𝑖𝑛(Ω𝑡 + 𝜃) 

Add equation (5) & (6), 

𝑒𝑗(Ω𝑡+𝜃)+𝑒−𝑗(Ω𝑡+𝜃) = cos(Ω𝑡 + 𝜃) + 𝑗𝑠𝑖𝑛(Ω𝑡 + 𝜃) + cos(Ω𝑡 + 𝜃) − 𝑗𝑠𝑖𝑛(Ω𝑡 + 𝜃)= 2 cos(Ω𝑡 + 𝜃) 

So, 2cos(Ω𝑡 + 𝜃) = [ 
1

2
[𝑒𝑗(Ω𝑡+𝜃) +𝑒−𝑗(Ω𝑡+𝜃)]] 

Result is 𝑥𝑎(𝑡) =  
A

2
𝑒𝑗(Ω𝑡+𝜃) +

A

2
𝑒−𝑗(Ω𝑡+𝜃) 

 

Sample and Hold 

Circuit 
ADC Filter DAC 
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(ii) Discrete- time signals: 

A discrete-time sinusoidal signal may be expressed as, 

𝑥(𝑛) =  𝐴 𝑐𝑜𝑠 (𝜔𝑛 + 𝜃),−∞ < 𝑛 < ∞ ----------> (1) 

Where, 

n  An integer variable. 

A  Amplitude of the sinusoid. 

𝜔 -------> Frequency in radians per sample 

𝜃 --------> Phase in radians. 

If instead of 𝜔, we use the frequency variable ‘f’. 

𝜔 = 2𝜋𝑓 ----------------------------------------------> (2) 

Equation (1) becomes, 

𝑥(𝑛) =  𝐴 𝑐𝑜𝑠 (2𝜋𝑓𝑛 + 𝜃), −∞ < 𝑛 < ∞ --------> (3) 

The frequency ‘f’ has dimensions of cycle per sample. 

 

In contrast to continuous-time sinusoids, the discrete-time sinusoids are characterized by the following 

properties. 

Properties: 

 A discrete-time is periodic only if its frequency is a rational number. 

 Discrete-time sinusoid whose frequencies are separated by an integer multiple of 2π are identical.  

 The highest rate of oscillation in a discrete-time sinusoid is attained. When (𝜔 = 𝜋) (or) (𝜔 = −𝜋) or 

equivalently (𝑓 =
1

2 
 𝑜𝑟 = −

1

2
) 

SAMPLING THEOREM: 

3. Derive an expression for Sampling theorem and its Reconstruction of x(t). [Nov/Dec-

2010][May/June-12][May/june-2015] 

Any arbitrary band-limited continuous time signal can be represented in its samples and recovered 

from its samples taken at equal intervals at the sampling rate of fs≥2f samples/ second. This sampling 

theorem and reconstruction formula require infinite number of samples. But practically it is not possible to 

take infinite number of samples. 

When the analog frequency is band limited to the range given by the sampling theorem. The digital 

frequency response is also changed in the same manner. 

If fs<2f then aliasing problem will occur. 

Aliasing effect: 

Aliasing is a problem due to interference of information between two band of frequencies. The output due to 

aliasing is known as an aliased representation of the original signal. This effect should be avoided. 

How to avoid aliasing effect? 

According to sampling theorem, sampling the continuous time waveform at a high rate is the only one way 

to avoid aliasing effect. 

Nyquist rate: 

The sampling rate is generally referred as Nyquist rate. 

Proof of sampling theorem: 

Consider x(t) as input continuous signal. It has finite energy and finite duration. This x(t) is band limited 

signal. 



EC85523Discrete time signal processing                          Unit 1-Discrete fourier transform       Page No 4 

 

Ts=1/fs = Sampling period  

fs= Sampling frequency 

Impulse function is given as 

    

)1()()(  


n

SnTttX 

 

After sampling input x(t) is represented as )(tX  

 

 

 

Fourier transform of equation is given as 

(3)--------------------------- )()(  


n

SS nffXftX   

)4()().0()(

0

 





n
n

SSSS nffXfffXffX   

(5)------------------ )()()(

0

 





n
n

SSS nffXffXffX   

Find FT of x(t) 

 

If we take the Fourier transform of continuous signal x(t), we will get 

 

 

 

If we write above equation for discrete signal put t=nTS 

(7)-------------------.)()(
.2








 SnTfj

n

S enTxtX


  

Rearrange equation (5) 

(8)------------ )()(
1

)(

0

 





n
n

S

S

nffXfX
f

fX   

(9)-------------------------- )(
1

)(  fX
f

fX
S

  

If frequency lies between –f to +f 

Put eqn (7) in (9) 

(10)-------------
11

)(

1
.2
































 Sf
nfj

n SS

e
f

nx
f

fX


 

Reconstruction of x(t): 

x(t) can be reconstructed from equation (10) and put fS=2f 

(11)---------------
22

1
)( 2

1
2






























 f
nj

n

e
f

n
x

f
fx



 

Take inverse Fourier transform of above equation 

(12)-----------.dfe 
22

1
)( ftj2 























  










f

f

f

nj

n

e
f

n
x

f
tx  

(2)-------------------------)(.)()(  




S

n

S nTxnTttX 

(6)-----------------------   ).()( 2  




 dtetxfX ftj 
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(Order of summation and integration is interchanged) 

 

 

 

In above equation put 





sin
sin c formula, which is the sin c function 

)2(sin
)2(

)2sin(
nftc

nft

nft









 

Now, 
















n

nftc
f

n
xtx )2(sin

2
)(  

The above equation is also known as interpolation formula and it expand as, 

                        

........)12(sin
2

1
)2(sin).0()( 








 ftc

f
xftcxtx 

 
Challenge: 1 

Consider the analog signal 𝒙𝒂(𝒕) =  𝟑𝒄𝒐𝒔𝟏𝟎𝟎𝝅𝒕. 

(a) Determine the minimum sampling rate required to avoid aliasing. 

(b) Find the nyquist rate and Nyquist interval. 

(c) Find the folding frequency. 

Given: Analog signal 𝑥𝑎(𝑡) =  3𝑐𝑜𝑠100𝜋𝑡. 

        General equation 𝑥(𝑡) =  𝐴𝑐𝑜𝑠𝜔𝑡. 

Compare with given equation, A= 3; 𝜔 =  100𝜋 

a) Determine the minimum sampling rate required to avoid aliasing. 

𝑓𝑠 ≥ 2𝜔 

2𝜋𝑓 =  𝜔 = 100𝜋 

𝑓 = 50 

This is the maximum frequency fmax (or) 𝜔 

𝜔 = 50 

Minimum sampling rate 𝑓𝑠 = 2 𝜔 = 2 ∗ 50 = 100𝐻𝑧 

b) Find the Nyquist rate and Nyquist interval. 

Nyquist rate = 2 𝜔 = 2 ∗ 50 = 100𝐻𝑧. 

Nyquist Interval = 
1

2 𝜔
=

1

2∗50
=  

1

100
𝑠𝑒𝑐𝑠 

c) Find the folding frequency. 

𝑓𝑜𝑙𝑑𝑖𝑛𝑔 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦(𝐹𝑓) =  
𝑓𝑠

2 
=
𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

2 
=
100

2 
= 50𝐻𝑧 

Half of the sampling frequency = 50𝐻𝑧 

Discrete – Time Signals: 

 Representation of Discrete – Time Signals: 

 Elementary of Discrete – Time Signals: 

 Classification of Discrete – Time Signals: 

 Operation of Signals: 

Representation of Discrete – Time Signals: 

4. Explain the different representation of Discrete-time signals. [Nov/Dec-13] 
There are different types of representation for discrete-time signals. They are 
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 Graphical representation 

 Functional representation 

 Tabular representation 

 Sequence representation 

Graphical representation: 

Let us consider a signal x(n) with values 5.0)2(;2)1(;2)0(;1)1(  xxxx and 5.1)3( x . This 

discrete-time signal can be represented graphically as shown in below. 

                                                            (n)     2 

 1.5 

 1 

 

 0.5 

 -1           0      1     2    3 n 

 

Functional Representation: 

The discrete-time signal can be represented using functional representation is below. 

𝑥(𝑛) =

{
 
 

 
 
1 𝑓𝑜𝑟 𝑛 = −1
2 𝑓𝑜𝑟 𝑛 = 0,1
0.5 𝑓𝑜𝑟 𝑛 = 2
1.5 𝑓𝑜𝑟 𝑛 = 3
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

Tabular Representation: 

The discrete-time signal can also be represented as, 

n        -1    0     1       2          3 

x(n)    1     2    2     0.5      1.5 

Sequence Representation: 

A finite duration sequence with time origin (n = 0) indicated by the symbol    is represented as 

 5.1,5.0,2,2,1)( nx  

 

An infinite duration sequence can be represented as, 

 ........2,3,1,1,2.0...)( nx  

 

A finite duration sequence that satisfies the condition 0)( nx for n<0 can be represented as, 

 38,6,4,2)( nx  

Elementary of Discrete – Time Signals: 

5. Explain the different representation of Discrete-time signals. 
There are different types of elementary of discrete-time signals are, 

 Unit step sequence 

 Unit ramp sequence 

 Unit-sample sequence 

 Exponential sequence 

 Sinusoidal sequence 

 Complex exponential sequence. 

Unit step sequence: 

The unit step sequence is defined as 
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𝑢(𝑛) =  {
1 𝑓𝑜𝑟 𝑛 ≥ 0
0 𝑓𝑜𝑟 𝑛 < 0

 

The graphical representation of u(n) is shown in figure. 

 
Unit ramp sequence: 

The unit ramp sequence is defined as 

𝑟(𝑛) =  {
𝑛 𝑓𝑜𝑟 𝑛 ≥ 0
0 𝑓𝑜𝑟 𝑛 < 0

 

The graphical representation of r(n) is shown in figure

 

 
Unit-sample sequence (unit impulse sequence): 

The unit-sample sequence is defined as, 

𝛿(𝑛) =  {
1 𝑓𝑜𝑟 𝑛 = 0
0 𝑓𝑜𝑟 𝑛 ≠ 0

 

The graphical representation of 𝛿(𝑛) is shown in figure. 

 
The unit impulse unction has the following properties. 

𝛿(𝑛) =  𝑢(𝑛) − 𝑢(𝑛 − 1)-----------------> (1) 

𝑢(𝑛) =  ∑ 𝛿(𝑘)𝑛
𝑘=−∞ -----------------------> (2) 

∑ 𝑥(𝑛)𝛿(𝑛 − 𝑛𝑜) = 𝑥(𝑛𝑜)∞
𝑛=−∞ ---------> (3) 

Exponential sequence: 

The exponential signal is a sequence of the form 

𝑥(𝑛) =  𝑎𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 

Different types of discrete-time exponential signals. 

 When the value of a > 1, the sequence grows exponentially and 

 When the values is 0 < a < 1, the sequence decay exponentially. 
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 When a < 0, the discrete-time exponential signal takes alternating signs. 

 
 

Sinusoidal signal: 

The discrete-time sinusoidal signal is given by, 

)cos()(   onAnx ---------> (1) 

Where, o - is the frequency (in radians per sample) and   is the phase (in radians). 

Using euler’s identity, we can write 

𝐴 cos(𝜔𝑜𝑛 + 𝜑) =
𝐴

2
𝑒𝑗𝜑𝑒𝑗𝜔𝑜𝑛 +

𝐴

2
𝑒−𝑗𝜑𝑒−𝑗𝜔𝑜𝑛-------> (2) 

Since |𝑒𝑗𝜔𝑜𝑛𝜑|
2
= 1, the energy of the signal is infinite and the average power of the signal is 1. 

 
Complex Exponential signal: 

The discrete-time complex exponential signal is given by 

𝑥(𝑛) = 𝑎𝑛𝑒𝑗(𝜔𝑜𝑛+𝜑) 

= 𝑎𝑛 cos(𝜔𝑜𝑛 + 𝜑) +  𝑗𝑎𝑛sin (𝜔𝑜𝑛 + 𝜑)------ (1) 

 
*************************************************************************************** 

 

Classification of Discrete-time signals: 

There are different types of classification of discrete-time signals are, 

 Energy signals and power signals. 
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 Periodic and Aperiodic signals 

 Symmetric(even) and ant-symmetric(odd) signals. 

 Causal and non-causal signals. 

Energy signals and power signals: 

Energy signal: 

A discrete-time signal x(n) the energy ‘E’ is defined as, 

𝐸 = ∑ |𝑥(𝑛)|2
∞

𝑛=−∞

 

Power signal: 

The average power of a discrete-time signal x(n) is defined as, 

𝑃 = lim
𝑛→∞

1

2𝑁 + 1
∑ |𝑥(𝑛)|2
𝑁

𝑛=−𝑁

 

Note: 

 A signal is energy signal, if an only if the total energy of the signal is finite. For an energy signal P=0. 

 A signal is power signal, if the average power of the signal is finite. For power signal E=∞. 

 The signals that do not satisfy above properties are neither energy nor power signals. 

Challenge 1: 

Determine the values of power and energy of the following signals. Find whether signals are power, 

energy or neither energy nor power signals. 

(i) 𝒙(𝒏) = (
𝟏

𝟑
)
𝒏 

𝒖(𝒏)  [May/June-2016]        

(ii) 𝒙(𝒏) = 𝒆𝒋(
𝝅

𝟐
𝒏+

𝝅

𝟒
)
 

Solution: 

Given:  

(i) signal 𝑥(𝑛) = (
1

3
)
𝑛 

𝑢(𝑛) 

To find Energy signal of x(n) 

        𝐸 = ∑ |𝑥(𝑛)|2∞
𝑛=−∞  

8

9

91

1

9

1

)
3

1
(

)()
3

1
( 

0

0

2

-n

2






















































n

n

n

n

n nu

00

01)(





forn

fornnu
 

a
aa




1

1
.....1 2

 

To find Power of x(n) : 

        𝑃 = lim
𝑛→∞

1

2𝑁+1
∑ |𝑥(𝑛)|2𝑁
𝑛=−𝑁  
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0

9

1
1

9

1
1

12

1
lim

9

1

12

1
lim

)(
3

1

12

1
lim

1

0

2






































































N

N

n

n

N

Nn

n

N

N

nu
N

 

Result: The energy is finite and power is zero. Therefore, the signal is an energy signal. 

(i) 𝒙(𝒏) = 𝒆𝒋(
𝝅

𝟐
𝒏+

𝝅

𝟒
) 

 

Solution: 

Given: signal (ii)   𝑥(𝑛) = 𝑒𝑗(
𝜋

2
𝑛+

𝜋

4
) 
 

To find Energy of x(n): 

                                                         𝐸 = ∑ |𝑥(𝑛)|2∞
𝑛=−∞  
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1)( je  

To find power of x(n): 

        𝑃 = lim
𝑛→∞

1

2𝑁+1
∑ |𝑥(𝑛)|2𝑁
𝑛=−𝑁  

1

)12(
12

1
lim

1
12

1
lim

12

1
lim

2

42
































N
N

N

e
N

N

Nn

N

Nn

nj


121 


N
N

Nn

  

Result: The energy is infinite and power is finite. Therefore, the signal is power signal.  

 

H.W: Find whether the signals are power, energy or neither energy nor power signals. 

(i) )()cos( nuon     Ans: Power signal 

(ii) )2()2(  nunu     Ans: Energy signal 

(iii) (iii) 𝒙(𝒏) =  𝒔𝒊𝒏(
𝝅

𝟒
𝒏)     Ans : Power signal     

(iv) 𝒙(𝒏) =  𝒆𝟐𝒏𝒖(𝒏)    Ans : Power nor energy signal  
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Periodic and Aperiodic Signals: 

Challenge 1: 

Determine whether the signal is periodic or not. If the signal is periodic, find the fundamental period. 

(i) njenx 6)(      (ii)  










 2

1

5

3

)(
nj

enx  (iii) nnx 









3

2
cos)(



   

(iv) nnnx
4

3
cos

3
cos)(


  

Solution: 

Given signal: njenx 6)(  . 𝝎𝒐 = 𝟔𝝅 

The fundamental frequency is multiple of π. Therefore, the signal is periodic. 

3

6

2

2























N

o
N









Therefore the fundamental period is 3. 

(ii)  










 2

1

5

3

)(
nj

enx  

Solution: 

Given Signal: 










 2

1

5

3

)(
nj

enx ; 𝜔𝑜 = 
3

5
, which is not a multiple of 𝜋. Therefore, the signal is Aperiodic. 

 

H.W.Determine the fundamental period of the following signals, if they are priodic. 

(i)𝒙(𝒏) =  𝒔𝒊𝒏(
𝝅𝒏

𝟒
)        Ans:Periodic with N=8 

(ii) 𝒙(𝒏) = 𝒆𝒋𝟐𝒏       Ans:Aperiodic 

(iii) 𝒙(𝒏) = 𝒄𝒐𝒔
𝝅

𝟒
𝒏 + 𝒄𝒐𝒔𝟐𝒏   Ans:Aperiodic 

(iii) nnx 









3

2
cos)(



     Ans : Periodic with N=3 

 

(iv) nnnx
4

3
cos

3
cos)(




    Ans : Periodic with N=24

 

*************************************************************************************** 

Symmetric (even) and antisymmetric(odd) signals: 

Symmetric: 

A discrete-time signal x(n) is said to be a symmetric (even) signal, if it satisfies the condition. 

𝒙(−𝒏) =  𝒙(𝒏)𝒇𝒐𝒓 𝒂𝒍𝒍 𝒏------>  (1) 

𝒙𝒆(𝒏) =
𝟏

𝟐
[𝒙(𝒏) + 𝒙(−𝒏)] 

 

Example: cos𝜔𝑛 

Antisymmetric: 

The signal is said to be an odd signal if it satisfies the condition. 

𝒙(−𝒏) = −𝒙(𝒏)𝒇𝒐𝒓 𝒂𝒍𝒍 𝒏--------> (2) 

𝒙𝒐(𝒏) =
𝟏

𝟐
[𝒙(𝒏) − 𝒙(−𝒏)] 

Example: sin𝜔𝑛 

*************************************************************************************** 

Causal and Non-causal Signals: 

A signal is said to be causal, if its value is zero for n < 0. Otherwise the signal is non-causal. 

Basic operation on Signals: 

6. Explain the basic operation on Signals. 

  Signal processing is a group of basic operations applied to an input signal resulting in another signal as the 

output. 

 The mathematical transformation from one signal to another is represented as 



EC85523Discrete time signal processing                          Unit 1-Discrete fourier transform      Page No 12 

 

 )()( nxTny   

The basic sets of operations are, 

1.Shifting 

2. Time reversal 

3. Time scaling 

4. Scalar multiplication 

5 Signal multiplier 

6. Signal addition 

Shifting: 

 The shift operation takes the input sequence and shifts the values by an integer increment of the 

independent variable. 

 The Shifting may delay or advance the sequences in time. Mathematically this can be represented as 

y(n) = x(n - k) 

Where x(n) is the input and y(n) is the output. 

 If k is positive. the shifting delays the sequence. 

 If k is negative. the shifting advances the sequence. 

Example: The signal x(n - 3) is obtained by shifting x(n) right by 3 units of time. The result is shown in 

Figure. On the other hand, the signal x(n+2) is obtained by shifting x(n) left by two units of time. 

 Time reversal: 

 The time reversal of sequence x(n) can be obtained by folding the sequence about n = 0.It is denoted as 

x(-n). For the signal x(n) shown in figure, the x(-n) is given in figure. 

Example: The signal x(-n + 2) is x(-n) delayed by two units of time and x(-n- 2) is x(-n) advanced by two 

units of time. The graphical representation of  x(-n - 2) and x(-n + 2) are shown in figure. 

 
 

Time Scaling: 

This is accomplished by replacing ‘n’ by λn in the sequence x(n). Let x(n) is a sequence shown in figure.  

If λ = 2 we get a new sequence 

y(n) = x(2n). 

We can plot the sequence y(n) by substituting different values for n. 

For 3)2()1(;1  xyn  

Similarly,   

1)4()2(

3)2()1(

5)0()0(







xy

xy

xy
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Scalar Multiplication: 

A scalar multiplier is shown in below. Here, the signal x(n) is multiplied by a scale factor a. 

 

 
For example if 𝑥(𝑛) = {1,2,1, −1}𝑎𝑛𝑑 𝑎 = 2. then the signal 𝑎𝑥(𝑛) = {2,4,2, −2} 
Signal Multiplier: 

The multiplication of two signal sequence to form another sequence. 

 
For example, if  2,3,2,1)(1 nx

   

 1,2,1,1)(2 nandx  

Then,  2,6,2,1)(2).(1 nxnx  

Addition Operation: 

Two signals can be added by using an adder shown in below. 

 
For example, if 

 

 1,2,3,4)(2

4,3,2,1)(1





nx

andnx
 

Then,  5,5,5,5)(2)(1  nxnx  

Classification of Discrete-time systems: 

7. Discuss the various Classifications of Discrete-time systems. [May/June-2013][Nov/Dec-13][April/May-

14][Nov/Dec-14] 

Discrete-time systems are classified according to their general properties and characteristics. They are, 

 Static and Dynamic systems 

 Causal and Non-causal systems 

 Linear and Non-linear systems 

 Time variant and Time-Invariant systems 

 Stable and Unstable systems. 

Static and Dynamic systems 
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Static systems: 

 A Discrete-time system is called Static or Memory less if its output at any instant ‘n’ depends on the 

input samples at the same time, but not on past or future samples of the input. The output at any 

instant depends on the input at that instant.  

Example: 

)()( naxny 

 Dynamic systems: 

 A Discrete-time system is said to be dynamic or to have memory, if the output of y(n) depends on 

past or future samples of the input. The output depends on past values of input. It requires memory. 

Example: 

)2()1()(  nxnxny  

Causal and Non-causal Systems: 

Causal system: 

A system is said to be causal if the output of the system at any time n [i.e y(n)] depends only on present and 

past inputs [i.e., x(n), x(n-1, x(n-2)…)]but does not depend on future inputs [i.e., x(n+1, x(n+2)…)]. In 

mathematical terms, the output of a casual system satisfies an equation of the form 

𝑦(𝑛) = 𝐹[𝑥(𝑛), 𝑥(𝑛 − 1), 𝑥(𝑛 − 2),… . ] 

where F[.] is some arbitrary function. 

Example: 

)1()()(  nxnxny  

Non-Causal systems: 

If the output of a system depends on future inputs, the system is said to be non-causal or anticipatory. 

Example: 

)2()( nxny   
Linear system and Non-linear systems: 

Linear system: 

A linear system is the one that satisfies the superposition principle. Superposition principle states that the 

response of the system to a weighted sum of signals be equal to the corresponding weighted sum of 

responses (output) of the system to each of the individual input signals. 

A system is linear if and only if 

𝒯[𝑎1𝑥1(𝑛) + 𝑎2𝑥2(𝑛)] = 𝑎1𝒯[𝑥1(𝑛)] + 𝑎2𝒯[𝑥2(𝑛)] 

where x1(n) and x2(n) are arbitrary input sequence and a1 and a2 are any arbitrary constants . 

Example: 

y(n) = n x(n) 

Non-linear systems: 

A system does not satisfy the superposition principle is called non- linear system. 

𝒯[𝑎1𝑥1(𝑛) + 𝑎2𝑥2(𝑛)] ≠ 𝑎1𝒯[𝑥1(𝑛)] + 𝑎2𝒯[𝑥2(𝑛)] 
Example: 

y(n)=Ax(n) + B 

Time Variant and Time-Invariant systems: 

Time invariant (Shift Invariant)system: 

A relaxed system 𝒯 is time invariant or shift invariant if and only if 

𝑥(𝑛)
𝒯
→ 𝑦(𝑛) 

Implies that 

𝑥(𝑛 − 𝑘)
𝒯
→ 𝑦(𝑛 − 𝑘) 

For every input signal x(n) and every time shift k. 
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In other words, A system is said to be time-invariant or shift invariant if the characteristics of the system do 

not change with time. 

i.e )(),( knykny   

Example: 

Differntiator 

Time variant (Shift variant)system: 
A system is said to be time-variant or shift variant if the characteristics of the system changes with time. 

)(),( knykny   

Stable and Unstable systems: 

Stable system: 

An arbitrary relaxed system is said to be bounded input-bounded output (BIBO) stable if and only if every 

bounded input produces a bounded output. 







n

nh )(  

Unstable System: 

If, for some bounded input sequence x(n), the output is unbounded(infinite), the system is classified as 

unstable. 

*************************************************************************************** 

 

Challenge 1: find whether the following systems are static or dynamic. 

(i) )1()()(  nxnxny  (ii) )()()( 2 nxnxny   

Solution: 

Given: Output system )1()()(  nxnxny  

The output y(n) depends on the past input. Therefore the system is dynamic. 

(ii) )()()( 2 nxnxny   

Solution: 

Given: output system )()()( 2 nxnxny   

The output y(n) depends on the present input only. Therefore the system is static. 

*************************************************************************************** 

H.W: check whether the following systems are static or dynamic. 

(i) )2()( nxny   Ans: Dynamic 

(ii) )()( 2 nxny   Ans: Static 

*************************************************************************************** 

Challenge 2: Test whether the following systems are causal or non-causal. 

(i)
)1(

1
)()(




nx
nxny                          (ii) )()( 2nxny   

Solution: 

Given: output of the system 
)1(

1
)()(




nx
nxny  

For n=-1; 
)2(

1
)1()1(




x
xy  

For n=0;    )1(

1
)0()0(




x
xy  

For n=1;       
)0(

1
)1()1(

x
xy   

For all values of ‘n’, the output depends on present and past inputs. Therefore, the system is causal.  

(ii) )()( 2nxny   

Solution: 

Given: output of the system )()( 2nxny   

For n= -1;  )1()1( xy 
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For n=0;     )0()0( xy   

For n= 1;    )1()1( xy   

For all values of ‘n’, the output depends on future inputs. So, the system is Non-causal. 

H.W: Test whether the following systems are causal or non-causal. 

(i) BnAxny  )()(   Ans: Causal 

(ii) )1()()(  nbxnaxny   Ans: Causal. 

Challenge 3: Determine if the system described by the following input-output equations is linear or 

non-linear.[May/June-2016] 

(i)
)1(

1
)()(




nx
nxny         (ii) )()( nnxny   

Solution: 

Given: output of the system 
)1(

1
)()(




nx
nxny  

For two input sequences 𝑥1(𝑛)𝑎𝑛𝑑 𝑥2(𝑛) the corresponding outputs are, 

 )](1[)(1 nxTny
)1(1

1
)(1




nx
nx --------------------------------------------------------> (1) 

 )](2[)(2 nxTny
)1(2

1
)(2




nx
nx ------------------------------------------------------> (2) 

The output due to weighted sum of input is 

)1(22

1
)(22

)1(11

1
)(11)](22)(11[)(3







nxa
nxa

nxa
nxanxanxaTny -----> (3) 

The linear combination of the two output is, 

)1(2

2
)(22

)1(1

1
)(11)(22)(11







nx

a
nxa

nx

a
nxanyanya ------------------------> (4) 

equation (3) and (4) are not equal. So, the system is non-Linear. 

(ii) )()( nnxny   

Solution: 

Given: output of the system )()( nnxny   

For two input sequences 𝑥1(𝑛)𝑎𝑛𝑑 𝑥2(𝑛) the corresponding outputs are, 

 )](1[)(1 nxTny )(1 nnx ---------------------------------------------------------------------> (1) 

 )](2[)(2 nxTny )(2 nnx -------------------------------------------------------------------> (2) 

The output due to weighted sum of input is 

)(22)(11)](22)(11[)(3 nnxannxanxanxaTny  ------------------------------------> (3) 

The linear combination of the two output is, 

 )(22)(11)(22)(11 nnxannxanyanya  ------------------------------------------------> (4) 

equation (3) and (4) are equal. So, the system is Linear. 

*************************************************************************************** 

H.W: check whether the system is linear or not. 

(i) 
)1(

1
)(2)(




nx
nxny  Ans: Non-linear 

(ii) )()( 2 nnxny   Ans: Non-linear 

(iii) )()( 2 nxny   Ans: Non-linear 

*************************************************************************************** 

Challenge 4: Determine if the following systems are time-invariant or time variant. 

(i) )1()()(  nxnxny                         (ii) )()( nxny   

Solution: 

Given: output of the system )1()()(  nxnxny  

If the input is delayed by ‘k’ units in time, we have 

)1()(),(  knxknxkny ------------------------------------------------------------> (1) 
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If the output is delayed by ‘k’ units in time, then (n-> n-k) 

)1()()(  knxknxkny ----------------------------------------------------------> (2) 

Here, )(),( knykny   

Therefore, the system is time-invariant. 

(ii) )()( nxny   

Solution: 

Given: output of the system )()( nxny   

If the input is delayed by ‘k’ units in time, we have 

)(),( knxkny  ---------------------------------------------------------------------------> (1) 

If the output is delayed by ‘k’ units in time, then (n-> n-k) 

)()( knxkny  -------------------------------------------------------------------------> (2) 

Here, )(),( knykny   

Therefore, the system is time-variant. 

*************************************************************************************** 

H.W: Determine if the following systems are time invariant. 

(i) 









2
)(

n
xny  Ans: Time-variant 

(ii) )()( 2 nnxny   Ans: Time-Variant 

*************************************************************************************** 

Challenge 5: Test the stability of the system whose impulse response )(
2

1
)( nunh

n









  

Solution: 









































0 2

1

)(
2

1

)(

n

n

n

n

n

nu

nh

 









2

2

1
1

1

...........
4

1

2

1
1

 

Hence the system is stable. 

*************************************************************************************** 

Challenge 6: Test if the following systems are stable or not. 

(i) )()()( nunxny    (ii) )1()()(  nnxnxny  

Solution: 

Given: output of the system )()()( nunxny   

If the input x(n) is bounded, Mnx )(  then 

Mnunxny  )()()(  

That is .)( Mny  hence the system is stable. 

(ii) )1()()(  nnxnxny  

Solution: 

Given: output of the system )()()( nunxny   

If the input x(n) is bounded, Mnx )(  then 
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)1()()(  nnxnxny  

The output increases with increasing n. hence the bounded input produce unbounded output. Hence the 

system is unstable. 

*************************************************************************************** 

H.W: Test if the following systems are stable or not. 

(i) )()( nxsignny   Ans: Stable 

(ii) )2()( nxny   Ans: Stable 

(iii) )()( nxeny   Ans: Stable 

(iv) bnaxny  )()(  Ans: Stable 

(v) )()( nxny   Ans: Stable 

(vi) )cos()()( onnxny   Ans: Stable 

(vii) 





non

nonk

kxny ][)(  Ans: Stable 

*************************************************************************************** 

DFT (Discrete-Fourier Transform) 

The  sequence  X(k )  is  called  the  N-point  DFT  of  x(n).  These coefficients are related to x(n)  as 

follows: 

𝑋(𝑘) =       ∑ 𝑥(𝑛)𝑒−
𝑗2𝜋𝑘𝑛

𝑁

𝑁−1

𝑛=0

, 𝑘 =  0, 1…  𝑁 − 1 

The N-point IDFT of the sequence X(k) is 

𝑥(𝑛) =   
1

𝑁
∑𝑋(𝑘)𝑒

𝑗2𝜋𝑘𝑛

𝑁

𝑁−1

𝑘=0

, 𝑛 =  0, 1…  𝑁 − 1 

Challenge 1. 

0

3

2

0

3

0

int ( ) {0,1,2,3}.

( ) {0,1,2,3}

(k) ( ) 0,1,2,3

(0) 0 1 2 3 6

(1) ( )

0 1( ) 2( 1) 3( ) 2 j2

(2) ( )

0 1( 1) 2(1) 3( 1)

j kn
N

n

j kn

n

j kn

n

ComputeThe DFT of the four po sequencesx n

Givenx n

X x n e k

X

X x n e

j j

X x n e







 











 



 

    



        



     







3

2

0

2

(3) ( )

0(1) 1( ) 2( 1) 3( ) 2 2

( ) {6, 2 2, 2, 2 2}

j kn

n

X x n e

j j j

X k j j





 



        

     



 

*************************************************************************************** 

Challenge 2:Determine the 8-point DFT of the sequence x(n)={1,1,1,1,1,1,0,0}.[Nov/Dec -

2010][April/May-2011] 

Solution: 
1

2 /

0

(k) (n)e 0,1,... 1
N

j kn N

n

X x k N
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For N=8 
7

/4

0

(k) (n)e 0,1,2.... 1j kn

n

X x k N



    

For k=0 
7

0

(0) (n)
n

X x



 

    

X(0) = x(0)+x(1)+x(2)+x(3)+x(4)+x(5)+x(6)+x(7) 

= 1+1+1+1+1+1+0+0 

= 6 

For k=1 
7

/4

0

(1) (n)e j n

n

X x 



  

X(1) = x(0) +x(1) e-jπ/4+x(2) e-jπ/2+x(3) e-j3π/4+x(4) e-jπ+x(5) e-j5π/4+x(6) e-j3π/2+x(7) e-j7π/4 

        = 1+0.707-j0.707-j-0.707-j0.707-1-0.707+j0.707         => -0.707-j1.707 

For k=2 
7

/2

0

(2) (n) j n

n

X x e 



  

X(2) = x(0)+x(1) e-jπ/2+x(2) e-jπ+x(3) e-j3π/2+x(4) e-j2π+x(5) e-j5π/2+x(6) e-j3π+x(7) e-j7π/2 

        = 1-j-1+j+1-j 

        = 1-j 

For k=3 
7

3 /4

0

(3) (n) j n

n

X x e 



  

X(3) = x(0)+x(1) e-j3π/4+x(2) e-j3π/2+x(3) e-j9π/4+x(4) e-j3π+x(5) e-j15π/4+x(6) e-j9π/4  +x(7) e-j21π/4 

        = 1-0.707-j0.707+j+0.707-j0.707-1+0.707+j0.707 

        = 0.707 + j0.293 

For k=4 
7

0

(4) (n)e j n

n

X x 



  

X(4) = x(0)+x(1) e-jπ +x(2) e-jπ2 +x(3) e-jπ3 +x(4) e-jπ4 +x(5) e-jπ5 +x(6) e-jπ6 +x(7) e-jπ7 

        = 1-1+1-1+1-1 = 0 

For k=5 
7

5 /4

0

(5) (n) j n

n

X x e 



  

X (5) = x(0)+x(1) e-j5π/4+x(2) e-j5π/2+x(3) e-j5πn/4+x(4) e-j5π+x(5) e-j25π/4+x(6) e-j15π/2 +x(7) e-j35π/4 

         = 1-0.707+j0.707-j+0.707+j0.707-1+0.707-j0.707 

         = 0.707-j0.293 

For k=6 
7

3 /2

0

(6) (n) j n

n

X x e 



  

X(6) = x(0)+x(1) e-j3π/2+x(2) e-j3π+x(3) e-j9π/2+x(4) e-j6π+x(5) e-j15π+x(6) e-j9π+x(7) e-j21π/2 

        = 1+j-1-j+1+j =>        = 1+j 

For k=7 
7

7 /4

0

(7) (n) j n

n

X x e 
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X(7) = x(0) +x(1) e-j7π/4+x(2) e-j7π/2+x(3) e-j21π/4+x(4) e-j7π+x(5) e-j35π/4+x(6) e-j21π/2 +x(7) e-j49π/4 

        = 1+0.707+j0.707+j-0.707+j0.707-1-0.707-j0.707 

       =  -0.707+j1.707 

 

 

*************************************************************************************** 

H.W: 1. Find the DFT of the Sequence  0,0,1,1)( nx  ;  Ans:  jjkX  1,0,1,2)(  

2. Determine the 4-point DFT of the sequence  6,4,2,0)( nx ;  Ans:  44,4,44,12)( jjkX   

Challenge 3: Find IDFT of the sequence X (K) = (5,0,1-j,0,1,0,1+j,0) 

Solution: 

We have 

x(n)=

1
2 /

0

1
(k) 0,1,...., 1

N
j kn N

k

X e n N
N






   

For N=8 

x(n)=

2
/4

0

1
(k)e 0,1,....7

8

N
j kn

k

X n






 

For n=0;  x(0)=

7

0

(k)
k

X


 = 
1

8
[5+0+1-j+0+1+j+0]=1 

For n=1; x(1)=

7
/4

0

1
(k)e

8

j k

k

X 



 =
1

8
[5+-(1-j)(j)+1(-1)+(1+j)(-j)]= 6/8= 0.75 

For n=2; x(2)=

7
/2

0

1
(k)e

8

j k

k

X 



 =
1

8
[5+(1-j)(-1)+1(1)+(1+j)(-1)]=4/8 =0.5 

For n=3; x(3)=

7
3 /4

0

1
(k)e

8

j k

k

X 



 = 
1

8
[5+(1-j)(-j)+1(-1)+ (1+j)(j)]= 2/8 = 0.25 

For n=4; x(4)=

7
5 /4

0

1
(k)e

8

j k

k

X 



 =
1

8
[5+(1-j)(1)+1(1)+(1+j)(1)]=8/8=1 

For n=5; x(5)= 

7
5 /4

0

1
(k)e

8

j k

k

X 



 =
1

8
[5+(1-j)(j)+(1)(-1)+(1+j)(-j)]=6/8=0.75 

For n=6; x(6)=

7
3 /2

0

1
(k)e

8

j k

k

X 



 =
1

8
[5+(1-j)(-1)+1(1)+(1+j)(-j)]=4/8=0.5 

For n=7;x(7)=
1

8

7
7 /4

0

j k

k

e 



 =
1

8
[5+(1-j)(-j)+1(1)+(1+j)(j)]=2/8=0.25 

 

 

*************************************************************************************** 

Challenge 4: Find IDFT of the sequence X (K) = {1,0,1,0} 

Solution: 

We have 







1

0

2

,)(
1

)(
N

k

N

knj

10,1....Nn     ekY
N

ny



 

For N=4 

X(K)={6,0.707-j1.707,1-j,0.707+j0.293,0,0.707-j0.293,1+j,-0.707+j1.707} 

 

x(n) = {1,0.75,0.5,0.25,1,0.75,0.5,0.25} 
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3

0

4

2

3,2,,)(
4

1
)(

k

knj

0,1n     ekYny



 

For n=0 





3

0

)(
4

1

k

kY y(0)                    

 )3()2()1()0(
4

1
yyyy                              

 

0.5                             

4

1
                             



 0101
 

For n=1 

 

  00101

sincos01

)3()2()1()0(

)(

2

3

2

3

0

2















 


4

1
                        

j
4

1
                        

eyeyeyy
4

1
                        

eky
N

1
y(1)                

j

j

j

k

kj










 

 

For n=2 

 

 

  5.00101

2sin2cos01

)3()2()1()0(

)(2

32

3

0

2

2







 


4

1
                        

j
4

1
                        

eyeyeyy
4

1
                        

eky
N

1
)y(                

jjj

k

kj







 

For n=3 

 

  00101

3sin3cos01

)3()2()1()0(3 2

9

32

3















4

1
                        

j
4

1
                        

eyeyeyy
4

1
 )y(                

j

j

j








 

 0,5.0,0,5.0)( ky  

*************************************************************************************** 

H.W: 1. Find the IDFT of the sequence  jjkX  2,02,1)(  with N=4.  

Ans: x(n)=[ 25.0,25.1,75.0,75.0  ] 

2. Find the 4-point IDFT of the sequence  jjkX  1,0,1,2)( ;   Ans:  0,0,1,1)( nx  

*************************************************************************************** 

Challenge 5: Perform the circular convolution of the following sequences 

method. IDFT and DFT using nx and nx 2 }4,3,2,1{)(}1,2,1,1{)(1 
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Solution: 

Given: the circular convolution of the following sequences 

 nx and nx 2 }4,3,2,1{)(}1,2,1,1{)(1 

 
To find DFT of x1(k): 
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To find DFT of x2(k): 
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To find IDFT of X3(n): 
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*************************************************************************************** 

Properties of DFT:  

1. State and prove any four properties of DFT. May/June-2012] [Nov/Dec-2012] [May/June-

2013][Nov/Dec-2013] [Nov/Dec-2014]

 

1. Periodicity property 

2. Linearity property 

3. Symmetry property 

4. Multiplication of two DFT and convolution 

5. Time reversal sequence 

6. Parseval’s theorem 

Periodicity property 

If X(k) is N-point DFT of a finite duration sequence x(n) 

Then  𝑥(𝑛 + 𝑁) = 𝑥(𝑛)𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 

         𝑋(𝑘 + 𝑁) = 𝑋(𝑘)𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 

Linearity 
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If two finite duration sequences x1(n) and x2(n) are linearly combined as 

𝑥3(𝑛) =  𝑎𝑥1(𝑛) + 𝑏𝑥2(𝑛) 

Then the DFT of x3(n) is  

𝑋3(𝑘) =  𝑎𝑋1(𝑘) + 𝑏𝑋2(𝑘) 

Proof: 

In summary if,   𝐷𝐹𝑇[𝑥1(𝑛)] =  𝑥1(𝑘) 𝑎𝑛𝑑 

𝐷𝐹𝑇[𝑥2(𝑛)] =  𝑥2(𝑘) 

Then 

𝐷𝐹𝑇[𝑎𝑥1(𝑛) + 𝑏𝑥2(𝑛)] =  𝑎𝑋1(𝑘) + 𝑏𝑋2(𝑘)  

Time Reversal of the sequence 

𝑥((−𝑛))𝑁 = 𝑥(𝑁 − 𝑛)    0 ≤ 𝑛 ≤ 𝑁 − 1 

𝐷𝐹𝑇[𝑥((−𝑛))𝑁] = 𝐷𝐹𝑇[𝑥(𝑁 − 𝑛)]  = 𝑥((−𝑘))𝑁 = 𝑋(𝑁 − 𝐾) 

Proof: 

𝐷𝐹𝑇[𝑥(𝑁 − 𝑛) =
1

2 /

0

(n)e
N

j kn N

n

x 






  

Changing the index from n to m = N-n, we get 

𝐷𝐹𝑇[𝑥(𝑁 − 𝑚) =
1

2 ( )/

0

( )e
N

j k n m N

n

x m 


 



  

                          = 𝑋(𝑁 − 𝑘) 

Complex conjugate property 

If 𝐷𝐹𝑇[𝑥(𝑛)] = 𝑋(𝑘) then 

   𝐷𝐹𝑇[𝑥∗(𝑛)] = 𝑋∗(𝑁 − 𝑘) =  𝑋∗((−𝑘))𝑁 

Proof: 

𝐷𝐹𝑇[𝑥∗(𝑛)] =  ∑ 𝑥∗(𝑛)𝑒−𝑗2𝜋𝑘𝑛/𝑁
𝑁−1

𝑛=0

 

       = [ ∑ 𝑥(𝑛)𝑒𝑗2𝜋𝑘𝑛/𝑁]𝑁−1
𝑛=0

∗
    

       = [ ∑ 𝑥(𝑛)𝑒−
𝑗2𝜋𝑛(𝑁−𝑘)

𝑁 ]𝑁−1
𝑛=0

∗

         = 𝑋∗(𝑁 − 𝑘) 

  𝐷𝐹𝑇[𝑥∗(𝑁 − 𝑛)] = 𝑋∗(𝑘) 

Multiplication of Two sequences 

If 𝐷𝐹𝑇[𝑥1(𝑛)] = 𝑋1(𝑘) and 

 𝐷𝐹𝑇[𝑥2(𝑛)] = 𝑋2(𝑘) then 

𝐷𝐹𝑇[𝑥1(𝑛)𝑥2(𝑛)] =
1

𝑁
[𝑋1(𝑘)  ⊙ 𝑋2(𝑘)] 

Parseval’s Theorem: 
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FFT-Fast Fourier Transform 

 DFT is given by 
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 The direct computation of the DFT requires 2N2 evaluations of trigonometric functions, 4N2 real 

multiplications 4N (N-1) real additions. 

By using the twiddle factor, 

N

nkj

nk

N eW                                            

2


  

Where,  WN is the “Nth” root of unity. 

Properties of twiddle Factor: 

k

N

Nk

N

k

N

N
k

N

WW  (ii)                               

WW (i)                                








2

 

There are two types of Radix-2 FFT 

1. Decimation in Time FFT 

2. Decimation in Frequency FFT 

Decimation in Time FFT 

2. Draw and explain the basic butterfly diagram or flow graph of DIT radix-2 FFT.[Nov/Dec-2009] 

1.In each computation two complex numbers” and “b” are considered.

 

2. The complex number “b” is multiplied by a phase factor “WN
kn” 

3. The product “ bWN
kn”  is added to  complex number “a” to form new complex number “A” 

4. The product “ bWN
kn” is subtracted from  comblex number “a” to form new complex number “B”. 

The above basic computation can be expressed by a signal flow graph 

 

The signal flow graph is also called butterfly diagram since it resembles a butterfly.  In radix-2 FFT, Z/2 

butterflies per stage are required to represent the computational process.  The butterfly diagram used to 

compute the 8point DFT via radix-2 DIT FFT. 

The sequence x (n) is arranged in bit reversed order and then decimated into two sample sequences. 

x(0) x(2) x(1) x(3) 

x(4) x(6) x(5) x(7) 

Fist stage of flow graph for 8-point DFT via radix-2 DIT FFT 
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Second stage of flow graph for 8-point DFT via radix-2 DIT FFT 

 

Third stage of flow graph for 8-point DFT via radix-2 DIT FFT 
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Combined stage for computation: 

 
 

Decimation in Frequency FFT

 
3. Draw and explain the basic butterfly diagram or flow graph of DIF radix-2 FFT.[Nov/Dec-2012] 

1. In each computation two complex numbers “a” and “b” are considered.   

2. The sum of the two complex number a&b are considered. 

3. The subtract complex number “b” from “a” to get the term “a-b” .  The difference term “a-b” is 

multiplied with the phase factor or twiddle factor “WN
k”    to form a new complex number”B”. 

The above basic computation can be expressed by a signal flow graph 

 

The signal flow graph is also called butterfly diagram since it resembles a butterfly.  In radix-2 FFT, Z/2 

butterflies per stage are required to represent the computational process.  The butterfly diagram used to 

compute the 8point DFT via radix-2 DIF FFT 

Flow graph for Fist Stage of Computation: 
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Flow graph or butterfly diagram for second stage of computation: 

 

Flow graph for Third Stage of computation: 

 

Challenge 6: Find the DFT of the sequence x[n] = {1, 2, 3, 4, 4, 3, 2, 1} using radix-2 decimation in time 

FFT algorithm. [Nov/Dec-2009] [April/May-2011][Nov/Dec-2012] [Nov/Dec-2012][May/June-

2013] [Nov/Dec2013][April/May-2014][Nov/Dec-2014][May/June-2015] [May/June-2016]. 

Solution: 



EC85523Discrete time signal processing                          Unit 1-Discrete fourier transform      Page No 28 

 

2

2
0

1 8

8

2
1

1 8

8

2
2

2 8

8

2
3

3 8

8

{1,2,3,4,4,3,2,1}

8

, 1

cos sin 0.707 0.707
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      7 0.707j

 

 ( ) {20, 5.828 2.414,0, 0.172 0.414,0, 0.172 0.414,0 5.828 2.414}X k j j j j          
X(k)={2,0.5-j1.207,0,0.5-j0.207,0,0.5-j0.207,0,0.5-j1.207} 

*********************************************************************************************** 

H.W: 1.Find the 8-point DFT of the sequence }1,1,1,1,2,2,2,2{)( nx using DIT-FFT algorithm. 

Ans: }414.21,0,4142.01,0,4142.01,0,414.21,12{)( jjjkX   

2. Find the 8-point DFT of the sequence 


 


otherwise 0

3n3for  
nx

1
)( using DIT-FFT algorithm. 

Ans: }1,1,1,1,1,1,1,7{)( kX  

3. Find the 8-point DFT of the sequence 


 


otherwise 0

nfor  
nx

601
)( using DIT-FFT algorithm. 

Ans: }707.0707.0,,707.0707.0,1,707.0707.0,,707.0707.0,7{)( jjjjjjkX   

4. Given 8N and nx n  2)( , find X(k) using DIT-FFT algorithm. 

Ans: }16663.48,10251,05.4663.78,85,05.4663.78,10251,16663.48,255{)( jjjjjjkX 
 

5. Compute the 8-point DFT of the sequence x (n) = (0.5, 0.5, 0.5, 0.5, 0, 0, 0, 0) using the radix-2 DIT algorithm. 

X(k)={2,0.5-j1.207,0,0.5-j0.207,0,0.5-j0.207,0,0.5-j1.207} 

6. Find the 8-point DFT of the sequence  1,1,1,1,1,1,1,1)( nx  using DIT-FFT algorithm. 

  414.3414.1,22,586.0414.1,4,586.044.1,22,414.3414.1,0)( jjjjjkx   

7. Given 8N and nnx  1)( , find X(k) using DIT-FFT algorithm. 

Ans:  656.94,44,656.14,4,656.14,44,656.94,36)( jjjjjkX 
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Challenge 7: Compute 4-point DFT of a sequence }3,2,1,0{)( nx using DIT algorithm. 

Solution: 

Given: The DFT of the sequence }3,2,1,0{)( nx  

The twiddle factors are, 

jW  W                             1

4

0

4  ;1  

 

}22,2,22,6{)( jjkX   

Problem 8: Find the 8-point DFT of given sequence  1,2,3,4,4,3,2,1)( nx  using DIF-FFT algorithm. 

[May/June 2015] [Nov/Dec-2014] 

 
( ) {20, 5.828 2.414,0, 0.172 0.414,0, 0.172 0.414,0 5.828 2.414}X k j j j j          

*************************************************************************************** 

Challenge 8: Compute the DFT of the sequence 
2

cos)(
n

nx  ,where N=4 using DIF-FFT algorithm. 

Solution: 

Given: Given: The DFT of the sequence 
2

cos)(
n

nx   

The twiddle factors are, 

jW  W                             1

4

0

4  ;1  
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}2,0,2,0{)( kX  

*************************************************************************************** 

H.W:1. Compute the FFT for the sequence }0,0,0,0,0,0,0,1{)( nx  Ans: }1,1,1,1,1,1,1,1{)( kX  

2. Find the 8-point DFT of the given sequence }7,6,5,4,3,2,1,0{)( nx using DIF, radix-2 FFT algorithm. 

Ans:  656.94,44,656.14,4,656.14,44,656.94,28)( jjjjjjkX   

3. Find the 8-point DFT of the sequence }1,2,2,1,1,2,2,1{)( nx using DIF-FFT algorithm. 

Ans:  0,22,0,0,0,22,0,12)( jjkX   

4.Find the IDFT of the sequence  414.21,0,414.01,0,414.01,0,414.21,4)(  jjjkX  using DIF 

algorithm.         Ans: }0,0,0,0,1,1,1,1{)( nx  

5. Find the 8-point DFT of given sequence  1,1,1,1,2,2,2,2)( nx  using DIF-FFT algorithm. [May/June-2015] 

[Nov/Dec-2014] 

X(k)= {12, 1-j2.414, 0, 1-j0.4142, 0, 1+j0.4142, 0, 1+j2.414} 

6. Given 8N and nnx  1)( , find X(k) using DIF-FFT algorithm. 

Ans:  656.94,44,656.14,4,656.14,44,656.94,36)( jjjjjkX   

*************************************************************************************** 

Filtering Methods based on DFT: Overlap-save method 

Filtering of a long sequence 

 Overlap-add method 

4: Explain overlap add method for linear FIR filtering of a long sequence. 

 Let the length of the sequence be LS and the length of the impulse response is M.  

 The sequence is divided into blocks of data size having length L and M-1 zeros are appended to it to 

make the data size of L+M-1. 

 Thus the data blocks may be represented as 

x1(n) =   (x(0),x(1,…..,x(L-1),      0,0,……….) 

 

       M-1 zeros appended 

 

x2(n)= (x(L),x(L+1),…….,x(2L-1), 0,0,……) 

x3(n) = (x(2L),x(2L+1),…….x(3L-1),  0,0……..) 

M-1 zeros appended 

 

 Now L-1 zeros are added to the impulse response h (n) and N-point circular convolution is 

performed.  

 Since each data block is terminated with M-1 zeros, the last M-1 points from each output block must 

be overlapped and added to the first M-1 points of the succeeding block. Hence this method is called 

overlap-add method. 

 Let the output blocks are of the form 

y1(n) = (y1(0), y1(1),……… y1(L-1,), y1(L),……………. y1(N-1)) 

y2(n) = (y2(0), y2(1),……… y2(L-1,), y2(L),……………. y2(N-1)) 

y3(n) = (y3(0), y3(1),……… y3(L-1,) , y3(L),……………. y3(N-1)) 

The output séquence is 

y(n)=( y1(0), y1(1),……… y1(L-1,) ,y1(L)+ y2(0), y2(1),…………., y1(N-1)+ y2(M-2),y2(M),……….., y2(L)+ y3(0), 

y2(L+1)+ y3(1),…………………., y3(N-1)) 

OVERLAP SAVE METHOD OF LINEAR FILTERING 

Step  1 :  In  this  méthod  L  samples  of    the  current  segment  and  M-1  samples  of  the previous segment forms 

the input data block. Thus data block will be 
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 X1(n) ={0,0,0,0,0,………………… ,x(0),x(1),…………….x(L-1)}  

 X2(n) ={x(L-M+1), …………….x(L-1),x(L),x(L+1),,,,,,,,,,,,,x(2L-1)}  

 X3(n) ={x(2L-M+1), …………….x(2L-1),x(2L),x(2L+2),,,,,,,,,,,,,x(3L-1)}   

Step2 :    Unit  sample  response  h(n)  contains  M  samples  hence  its  length  is  made  N  by padding zeros. Thus 

    h(n) also contains N samples. 

    h(n)={ h(0), h(1), …………….h(M-1), 0,0,0,……………………(L-1 zeros)} 

Step3 :    The  N  point  DFT  of  h(n)  is  H(k)  &  DFT  of  mth  data  block  be  xm(K)  then corresponding DFT of 

    output be Ym(k) 

               Ym(k)= H(k) xm(K) 

Step 4 : The sequence ym(n) Can be obtained by taking N point IDFT of Y`m(k). Initial  (M-1) samples in the 

   corresponding data block must be discarded. The last L samples are the  correct  output  samples.  Such  

   blocks are  filtered  one  after  another  to  get  the  final output. 

5. Summarize the difference between overlap save and add method. 

Overlap add Method Overlap save Method 

The overlap-add procedure cuts the signal up into 

equal length segments with no overlap. 

The overlap-save procedure cuts the signal up into 

equal length segments with some overlap 

Then it zero-pads the segments and takes the DFT 

of the segments. Part of the convolution result 

corresponds to the circular convolution 

Then it takes the DFT of the segments and saves the 

parts of the convolution that correspond to the circular 

convolution 

Results in the aliasing that occurs in circular 

convolution. 

No lost information in throwing away parts of the 

linear convolution. 

 

 

 

 

 

 

 

 

 
 

Fir filtering by using the overlapping-add method 

 

 
Result of circularly convolving each section with h[n]. 

The portions of each filter section to be discarded in 

forming the linear convolution are indicated 

Challenge 9: Determine the output response y(n) if h(n)=(1,1,1), x(n)=(1,2,3,1) by using linear 

convolution, circular convolution & circular convolution with zero padding.  (16) 

Solution:Linear convolution: 

x (n) = {1,2,3,1}, h(n)= {1,1,1} 

1 1 1 0    h(n) 

1 1 1 1 0 

2 2 2 2 0 

3 3 3 3 0 

1 1 1 1 0 

      x(n)    

[ ] 0 1
[ ]

0
r

x n rL n L
x n

otherwise

   
 


[ ] [ ] [ ] [ ]r

m

y n x n h n y n rL




   

[ ] [ ( 1) 1],      0 1rx n x n r L P P n L        

0

[ ] [ ( 1) 1]r

r

y n y n r L P P
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(n) {1,3,6,6,4,1}y


  

Number of samples in linear convolution is L+M-1 = 4+3-1 = 6 

Circular convolution: 

x(n) = {1,2,3,1} ; h(n) = {1,1,1,0} 

Using matrix approach 

1 0 1 1 1 5

1 1 0 1 2 4

1 1 1 0 3 6

0 1 1 1 4 6

   

y(n) = x(n) ©h(n) ={5,4,6,6} 

By comparing circular convolution output with that of linear convolution we find that the first 2 points  

(M-1) are aliased ie. Last two data points are added to first two data points in linear convolution are added to 

first two data points as shown below. 1+4=5 & 3+1=4 

Circular convolution with zero padding: 

Add (M-1) zeros with x(n) and (L-1) zeros with h(n); x(n) = {1,2,3,1,0,0}   h(n) = {1,1,1,0,0,0} 

 

y(n) = (1,3,6,6,4,1) 

*************************************************************************************** 

Challenge 10: Find the output y(n) of a filter whose impulse response is h(n)=(1,1,1) and input signal 

x(n)=(3,-1,0,1,3,2,0,1,2,1) using over lab save and add method. [May/June-2016] 

Solution: 

Overlap save method: 

x1(n)= {0,0, 3,-1,0} 

M-1=2 zeros L=3 data points 

x2(n)=  {-1,0,1,3,2} 

2 data from previous 3 new data 

x3(n)= {3,2,0,1,2} and x4(n)= {1,2,1,0,0} 

Given h(n) = {1,1,1} 

Increase the length by adding zeros( L+M-1=5) 

i.e. h(n) = {1,1,1,0,0} 

y1(n) = x1(n)©h(n) = {-1,0,3,2,2} 

1 0 0 1 1 0 1

1 1 0 0 1 0 0

1 1 1 0 0 3 3

0 1 1 1 0 1 2

0 0 1 1 1 0 2

     
     
     
     
     

     
            

y2(n) = x2(n) © h(n) = {4,1,0,4,6} 

1 0 0 0 1 1 1 1

1 1 0 0 0 1 2 3

1 1 1 0 0 0 3 6

0 1 1 1 0 0 1 6

0 0 1 1 1 0 0 4

0 0 0 1 1 1 0 1
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1 0 0 1 1 1 4

1 1 0 0 1 0 1

1 1 1 0 0 1 0

0 1 1 1 0 3 4

0 0 1 1 1 2 6

     
     
     
     
     
     
            

y3(n) = x3(n) © h(n) = {6,7,5,3,3} 

1 0 0 1 1 3 6

1 1 0 0 1 2 7

1 1 1 0 0 0 5

0 1 1 1 0 1 3

0 0 1 1 1 2 3

     
     
     
     
     
     
          

 

y4(1) = x4(n) © h(n) = {1,3,4,3,1} 

1 0 0 1 1 1 1

1 1 0 0 1 2 3

1 1 1 0 0 1 4

0 1 1 1 0 0 3

0 0 1 1 1 0 1

     
     
     
     
     
     
          

 

[-1,0,3,2,2] 

[4,1,0,4,6] 

[6,7,5,3,3] 

[1,3,4,3,1] 

(by discarding the selected) 

Y(n) = {3,2,2,0,4,6,5,3,3,4,3,1} 

Overlap add method: 

Length: L+M-1=5; N2-1=3-1=2 

Therefore, 

x1(n) = {3,-1,0} 

x2(n) = {1,3,2} 

x3(n) = {0,1,2} 

x4(n) = {1,0,0} 

 

y1(n) = x1(n).h(n) = {3,2,2,-1,0} 

 3          -1         0 

        1    3          -1          0 

           

        1     3          -1          0 

 

       1     3          -1          0 

 

Asdy(n)={3,2,2,-1,0} 

Similarly ,  y2(n) = x2(n) © h(n) = {1,4,6,5,2} 

y3(n) = x3(n) © h(n) = {0,1,3,3,2} 

y4(1) = x4(n) © h(n) = {1,1,1,0,0} 

[3,2,2,-1,0] 

                                   [1,4,6,5,2]    by adding 

        [0,1,3,3,2] 
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     [1,1,1,0,0] 

y(n) = {3,2,2,0,4,6,5,3,3,4,3,1} 

*************************************************************************************** 

H.W: 

1.  Using linear convolution find y(n)=x(n)*h(n) for the sequences x(n)=(1,2,-1,2,3,-2,-3,-1,1,1,2,-1) and   

h(n)=(1,2).Find the result by solving overlap-save and overlap add method. 

Solution: 

Linear convolution: 

   1       2     -1    2     3      -2       -3      -1       1     1    2     -1 

          

                 1   1     2      -1   2      3    -2        -3        -1     1      1    2        -1 

                           

                           2   2     4     -2    4      6      -4         -6        -2      2     2      4       -2 

 

    

y(n)= (1,4,3,0,7,4,-7,-7,-1,3,4,3,-2) 

2. Perform linear convolution of finite duration sequence }1,2,1,1{)( nh and 

}1,1,0,1,2,3,4,1,0,1,2,1,1,1{)( nx by overlap-add and overlap-save methods. 

Ans:   1,3,3,3,5,8,5,2,1,2,5,6,4,2,2,0,1)( ny  

*********************************************************************************************** 

Use of FFT as Linear Filtering: 

6. Write short note on use of FFT as linear Filtering.   

Linear filtering is needed in variety of applications. In this approach, input is known as value. If the input x(n) is large. 

Then it is very difficult to process it by using FFT algorithm. So, sectioned convolution concept is used. 

    

   x(n) y(n)=x(n)*h(n) 

 

 

 

h(n) 

The response of LTI system is given by the linear convolution of (x(n)input and h(n)) impulse response. If x(n) and 

h(n) are small in length then, the computation of response is easy. But, one of the sequence (x(n) (or) h(n)) is larger 

than other, then following problems may occur. 

 Large amount of memory is required to store the lengthy sequence. 

 Long delay occurs. 

In sectioned convolution, large sequence (x(n)) is divided into (or sectioned into) small sub sequences 

((x1(n),x2(n)……..), Then, linear convolution of subsequences (x1(n))and other sequence (h(n)) is computed. Finally, 

the output of all linear convolution ((x1(n)*h(n)),((x2(n)*h(n)),……) are combined to form the overall output. 

Challenge 11: Find the DFT of the sequence 


 


otherwise 0

2n0for  
nx

1
)(  for N=4 and compute the 

corresponding amplitude and phase spectrum. 

Solution: 1.N0,1.......k     ;         enxkX
N

n

N

knj






1

0

2

)()(



 

Given: The DFT of the sequence 


 


otherwise 0

2n0for  
nx

1
)(  

Here x(0)=1, x(1)=1,x(2)=1,x(3)=0;    N=4. 

For k=0: 

LTI SYSTEM 
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0X(0) X(0) Therefore

                3          

x(3)x(2)x(1)x(0) nxX
n








,3

)()0(
3

0

 

For k=1: 

j1j1          

jj          

ex(3)x(2)ex(1)ex(0) enxX

j

n

j

jnj

















0sincos
2

sin
2

cos1

)()1( 2

33

0

22










 

2
1,11


 )X( )X( Therefore  

For k=2 

11

02sin2cossincos1

)()2( 3
3

0

2





 





11          

jj          

ex(3)x(2)ex(1)ex(0) enxX j

n

jjnj





 

02,12  )X( )X( Therefore  

For k=3 

j1j1          

jj          

ex(3)x(2)ex(1)ex(0) enxX

j

n

j

jnj

















03sin3cos
2

3
sin

2

3
cos1

)()3( 2

93

0

32

3

2

3










 

2
3,13


 )X( )X( Therefore  

 1,1,1,3X(k)    






 


2

,0,
2

,0)(


kX  

The plot for below. figure in  shownis 4Nfor  X(k) and kX )(  

)(kX                                            X(k)   

3 

  
2


 

 

1 0 1 2 3          k 

0 k         
2


  

H.W: Find the DFT of the sequence 


 


otherwise 0

2n0for  
nx

1
)(  for N=4 and compute the corresponding 

amplitude and phase spectrum. 

Ans: 

 













4
,

2
,

4
,0,

4
,

2
,

4
,0)(

414.2,1,414.0,1,414.0,1,414.2,3)(


 kX

kX

 

*************************************************************************************** 
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UNIT II – INFINITE IMPULSE RESPONSE FILTERS 

 

 

 

 

 

 

 

STRUCTURES FOR IIR SYSTEMS: 

   IIR Systems are represented in four different ways  

1.  Direct Form Structures Form I and Form II  

2.  Cascade Form Structure  

3.  Parallel Form Structure  

4.  Lattice and Lattice-Ladder structure. 

DIRECT FORM-I : 

Challenge: Obtain the direct form-I, direct form-II,Cascade and parallel form realization of the system 

y(n)=-0.1y(n-1)+0.2y(n-2)+3x(n)+3.6x(n-1)+0.6x(n-2) [April/May-2015]  

Solution: 

Direct Form I: 

3 ( ) 3.6 ( 1) 0.6 ( 2) ( )

( ) 0.1 ( 1) 0.2 ( 2) ( )

Let x n x n x n w n

y n y n y n w n

The direct form I realizationis

    

     

 

     

Direct form II: 

From the given difference equation we have 

  
1 2

1 2

( ) 3 3.6 0.6
( )

( ) 1 0.1 0.2

Y z z z
H z

X z z z

 

 

 
 

 

 
The above system function can be realized in direct form II 

Characteristics of practical frequency selective filters. characteristics of commonly used analog filters - 

Butterworth filters, Chebyshev filters. Design of IIR filters from analog filters (LPF, HPF, BPF, BRF) - 

Approximation of derivatives, Impulse invariance method, Bilinear transformation. Frequency transformation 

in the analog domain. Structure of IIR filter - direct form I, direct form II, Cascade, parallel realizations. 

 



IIR Filters  Page 2 
 

 
Cascade Form: 

1 2

1 2

1 1

1 1

1

1 1

1

2 1

1 2

( ) 3 3.6 0.6

( ) 1 0.1 0.2

(3 0.6 )(1 )

(1 0.5 )(1 0.4 )

3 0.6
( )

1 0.5

1
( )

1 0.4

( ) ( )and cascade both toget realization of H(z)

Y z z z

X z z z

z z

z z

z
H z

z

z
H z

z

Nowwe realize H z and H z

 

 

 

 









 


 

 


 











 

      3 

     x(n)                  y(n)   

 

 

 

                 -0.5      0.6                  0.4 

 

 

 

 

 

 

 

 

z-1 

+ 
+ 

+ + 

z-1 
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Parallel form: 

 

1 2

1 2

1 1

1 2

3 3.6 0.6
( )

1 0.1 0.2

7 1
3

1 0.4 1 0.5

( ) ( )

z z
H z

z z

z z

c H z H z

 

 

 

 


 

   
 

  

 

              x(n)  -3  7 

     

     0.4 

  

       -1   y(n) 

 

     -0.5 

----------------------------------------------------------------------------------------------------------- 

 

 

Direct form I: 

H.W:  Obtain the direct form-I realization for the system described by the following difference 

equations. 

)1(5.0)(3.0)2(06.0)1(5.0

)(





nxnxnynyy(n)   (ii)

2)3x(n1)2x(nx(n)2)3y(n1)2y(ny(n)   i

 
Obtain the direct form-I realization for the system described by difference equation 

)1(4.0)()2(25.0)1(5.0)(  nxnxnynyny  

--------------------------------------------------------------------------------------------------------------------- 

Direct form II  

H.W: Determine the direct form II realization for the following system 

)1(
2

1
)()2(

8

1
)1(

4

3
)(

)2(3)()3(4)1()()(





nxnxnynyy(n) ii

nxnxnynyny i

[May/June-14] 

Determine the direct form II realization for the following system 

)2(252.0)(7.0)2(72.0)1(1.0)(  nxnxnynyny  

CASCADE FORM: 

----------------------------------------------------------------------------------------------------------------- 

H.W: For the system function 
21

21

8

1

4

3
1

21
)(










zz

zz
zH obtain cascade structure. 

+ + 

+ + 

z-1 

z-1 
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Realize the system with difference equation )1(
3

1
)()2(

8

1
)1(

4

3
 nxnxnynyy(n) in cascade 

form. 

************************************************************************************** 
Parallel form: 

H.W: Realize the system given by difference equation  

)2(252.0)(7.0)2(72.0)1(1.0)(  nxnxnynyny in parallel form. 

************************************************************************************** 

Analog filter design: 

 There are two types of analog filter design are,  

 Butterworth Filter 

 Chebyshev Filter.  

Analog Low pass Butterworth Filter: 

N Denominator of H(s) 

1 1S  

2 122  ss  

3   11 2  sss  

4   18477.1176537.0 22  ssss  

5    161803.1161803.01 22  sssss  

6    151764.0121931855.1 222  ssssss  

7     1445.01247.1180194.11 222  sssssss  

 

------------------------------------------------------------------------------------------------------------------------ 

 

 

Solution: 

Given data:  

Pass band attenuation αP= 2 dB; 

Stop band attenuation αS= 10 dB; 

Pass band frequency ΩP= 20 rad/sec. 

Stop band frequency ΩS=30 rad/sec. 

The order of the filter 

















































P

s

p

s

N

10

1.0

1.0

10

log

110

110
log





 

Design an analog Butterworth filter that has a -2dB pass band attenuation at a frequency of 20 

rad/sec and atleast -10 dB stop band attenuation at 30 rad/sec.
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3.37    

     

N






























































20

30
log

110

110
log

20

30
log

110

110
log

2.0

10

2*1.0

10*1.0

10

 

Rounding off ‘N’ to the next higher integer, we get 

  N=4 

The normalized transfer function for N=4. 

  18477.1176537.0

1
)(

22 


ssss
sH a   

To find cut off frequency 

N
p

p

c 2/1
1.0 )110( 






 

 
3868.21

110

20

4*2

1
20*1.0





 c

 

The transfer function for Ωc=21.3868, 

3868.21

)( s
Sa sHH(s)                               




 

   3868.2118477.1176537.0

1
)(

22

s
s

ssss
sH 


  

  394.4575176.39394.4573686.16

1020921.0
)(

1
3868.21

8477.1
868.21

1
*

1
3868.21

76535.0
868.21

1
)(

22

6

22











































ssss
sH

ssss
sH

**********************************************************************************************

 

H.W: Challenge 1:  For the given specification design an analog Butterworth filter 

.0.4for  )H(j          

0.20for     jH









2.0

1)(9.0

 

Ans:   2222 0576.0393.10576.0577.0

323.0
)(

 


ssss
sH
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Challenge 2: Determine the order and the poles of low pass Butterworth filter that has 3 dB 

attenuation at 500 Hz and an attenuation of 40dB at 1000Hz. 

 Ans:     1445.01247.1180194.11)( 222  ssssssssH  

Given the specification rad/sec.  ;rad  dB dB spsp 600sec/200;30;1   determine the order 

of the filter. Ans: N=4 

---------------------------------------------------------------------------------------------------------------------------  

Analog Low pass Chebyshev Filter: 

 There are two types of Chebyshev filters. 

 

 

 

 

 

 

Solution: 

Given: 

Step 1: 

Pass band attenuation αp= 3dB, 

Stop band attenuation αs=16 dB,  

Pass band frequency fP=1 KHz=2π*1000=2000π    rad/sec 

Stop band frequency fS=2 KHz=2π*2*1000=4000π rad/sec 

Step 2: Order of the filter 
































P

S

P

S

N
1

1.0

1.0
1

cosh

110

110
cosh





 

Given specifications αp= 3dB,αs=16 dB, fP=1KHz and fS=2KHz. Determine the order of the filter 

using Chebyshev approximation. Find H(s). 
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91.1

2000

4000
cosh

110

110
cosh

1

3*1.0

16*1.0
1






























     

N



  

Rounding the next higher integer value N=2. 

Step 3: The value of minor axis and major axis can be found as below 

    111 3  *0.1*0.1 1010                 P  

414.21111 2121                     

   

   








2197
2

414.2414.2

4000
2

910
2

414.2414.2

2000
2

2

1

2

1
11

2

1

2

1
11





















































NN

S

NN

P

b                

a                 

 

Step 4: The poles are given by 

 

 

  o

o

1

k

kkK

                       

Fork

                         

1kFor 

1,2k        
N

k
                           

1,2k     jba      S                    

225
4

3

22*2

12*2

2

2

135
422*2

12

2

;
2

12

2

;sincos

2 































 

   





155346.643

135sin*2197135cos*910sincos

1

11

j   s                    

jjba s                    1




 

   





155346.643

225sin*2197225cos*910sincos

2

222

j   s                    

jjba s                    




 

Step 5: The denominator of H(s): 

   22
1554 643.46sH(s)                                        

Step 6: The numerator of H(s): 

   

   
  22

2

22

2

22

38.1414
11

1554

1

1554
0



















643.46
                                                           

643.46
  H(s)                       s ,tute    substi
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 The transfer function 
 

  222

22

16821287

38.1414
)(








ss
sH  

---------------------------------------------------------------------------------------------------------------------------- 

HW: Challenge 1: Obtain an analog Chebyshev filter transfer function that satisfies the constraints  

  

4for  )H(j                

20for  jH
2

1
     





1.0

;1)(
 

Ans:
  354.3596.02 


ss0.596s

2
H(s)                             

2. Design a Chebyshev filter with a maximum pass band attenuation of 2.5dB at ΩP=20rad/sec and 

stop band attenuation of 30 dB at ΩS=50rad/sec. 

Ans:  N=3. 
  2.3436.66.6

27.2265
)(

2 


sss
sH  

----------------------------------------------------------------------------------------------------------------------------- ---- 

3. For the given specifications find the order of the Chebyshev-I filter 

.sec/30;/2;10;5.1 rad  Secrad dB dB SPSP    

----------------------------------------------------------------------------------------------------------------------------- ---- 

4. For the given specifications find the order of the Chebyshev-I filter 

.sec/20;/1;25;1 rad  Secrad dB dB SPSP    

Discrete time IIR filter from analog filter: 

Magnitude Response of LPF: 

 

Design of IIR filters from analog filters: 

The different design techniques available for IIR filter are  

1) Approximation of derivates 

2) Impulse invariant method 

3) Bilinear transformation 

4) Matched z-transform techniques. 

Approximation of derivates: 

 For analog to digital domain, we get 

 
T

z
s

11 
 -------------------------- (3) 

T

z
s

H(s)H(z)                              11 


 --------------------- (4) 

Mapping of the s-plane to the z-plane using approximation of derivatives. 

----------------------------------------------------------------------------------------------------------------------------- - 

 
Convert the analog BPF with system IIR filter 

  91.0

1
)(

2



s

sH a into a digital IIR filter by use 

of the backward difference for the derivative. [Nov/Dec-2015] 
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Solution: 

Given: 

T

z
sa sHH(z)                                     11)( 


  

 

 
 

j0.270.91                                     

 sec,T

z
TT

z
TT

T

TTT
                                        

T

z1

1
                                          

s
H(z)                                    

2

1

T

z
s







































1.0

01.92.01

1

01.92.01

1.012
1

01.92.01

91.0

91.0

1

2

2

1

2

2

2

2

11

 

Design of IIR filter using Impulse Invariance Method: 

Steps to design a digital filter using Impulse Invariance Method (IIM): 

Step 1: For the given specifications, find Ha(s) the Transfer function of an analog filter.  

Step 2: Select the sampling rate of the digital filter, T seconds per sample. 

Step 3: Express the analog filter transfer function as the sum of single-pole filter. 

   
 


N

k k

k
a

PS

C
sH

1

)(  

Step 4: Compute the z-transform of the digital filter by using formula 







N

k
Tp

k

ze

C
H(z)                                  

k
1

11
 

For high sampling rate, 







N

k
Tp

k

ze

TC
H(z) 

k
1

11
 

------------------------------------------------------------------------------------------------------------------------------------------------------ 

 

 

 

Solution: 

For the analog transfer function
2

2
( )

3 2
H s

s s


 
Determine H (z) using impulse invariant 

transformation if (a) T=1 second and (b) T=0.1 second.  [Nov/Dec-15] 
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2

2

2 2
, ( )

3 2 ( 1)(s 2)

exp ,

,

2 3 2 0 ,

2 3 3 4 2( )
( 1)( 2) 1 2 2

3 1
1, 2

2

2

( 1)

Giventhat H s
s s s

By partial fraction ansiontchnique wecan write

The roots of quadratic

S S are

A B XH s ss s s s

A
s

 
   

  

        

 
   




( 1)
(s 2)

X s 


1

2
2

1 2

2

(s 1) ( 2)

s

B
s



 
 


 

( 2)X s 

2

2
2

2 1
s

  
 

  

1

1 21 1

1 2 1

2 2
( )

1 2

var ,

1

2 2
(z) 1, 2

1 1

2 2
(z)

1 1

i

i i

i i

p T

i

p T p T

T T

H s
s s

By impulsein iant transformation weknowthat

A A

s p e z

H Where p p
e z e z

H
e z e z
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1 1 2 1

1 1

1 1 1 1

1 1 1

1 1 2

( ) When T 1second

2 2
(z)

1 1

2 2 2(1 0.1353 ) 2(1 0.3679 )
( )

1 0.1353 1 0.1353 (1 0.367 )(1 0.1353 )

2 0.27606 2 0.7358 0.4652

1 0.1353 0.3679 0.0498 1 0.5032

a

H
e z e z

z z
H z

z z z z

z z z

z z z

   

 

   

  

  




 

 

  
  

   

  
 

    1 2

1 1

1 2 2 2

2

0.1 1 0.2 1

1

1 1

0.0498

0.4652 0.4652
( )

1 0.5032 0.0498 z (z 0.5032 0.0498)

0.4652
( )

(z 0.5032 0.0498)

( ) 0.1sec

2 2
( )

1 1

2 2 2(1 0 .8187 )

1 0.9048 1 0.8187

z z

z z
H z

z z z

z
H z

z

b WhenT ond

H z
e z e z

z

z z

 

 

  

   



 



 
   


 




 

 

 
  

 

1

1 1

1 1 1

1 1 2 1 2

1 1

1 2 2 2

2(1 0.9048 )

(1 0.8187 )(1 0.9048 )

2 1.6374 2 1.8096 0.1722

1 0.8187 0.9048 0.7408 1 1.7235 0.7408

0.1722 0.1722
( )

1 1.7235 0.7408 ( 1.7235 0.7408)

0.172

z

z z

z z z

z z z z z

z z
H z

z z z z z



 

  

    

 

  

 

 

  
 

    

 
   


2

1 1

1 2 1 2

2

2

1.7235 0.7408

, 1, , ( ).

0.1722 0.1722
( ) ( ) 0.1

1 1.7235 0.7408 1 1.7235 0.7408

0.1722
( ) ( ) 0.1

1.7235 0.740

N

N

z

z z

Since T wecan computemagnitudenormalized transfer function H z

z z
H z T X H z X

z z z z

z
H z T X H z X

z z

 

   

 



  
   

 
  2

0.172

8 1.7235 0.7408

z

z z


 

 

 

 

 

Solution: 

Given: For N=3, the transfer function of a normalized Butterworth filter is given by 

2( 1)

1
                                      H(s)

(s 1) s s


  
 

Ans: 
1

1 2

1 0.66
( )

1 0.786 0.3681

1 z
H z    

1 0.368z z z



  

 
 

  
 

Design a third order Butterworth digital filter using impulse invariant technique. Assume sampling 

period T=1 sec. 
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---------------------------------------------------------------------------------------------------------------------------- 

 

 

 

Solution: 

Given: The transfer function 
22)(

)(
bas

as
sH




  

Sampling the function produces 

    

221

1

1)(1)(

1)(1)(

)cos(21

)cos(

1

1

1

1

2

)cos(

0

0)cos(
)(

































































 






 









zezbTe

zbTe1
 H(z)                                   

zeze2

1
                                             

zeze
2

1
                                              

ee
ze                                                

zbnTeH(z)                                        

otherwise                         

nfor     bnTe
nTh                                     

aTaT

aT

TjbaTjba

0n

nTjbanTjba

0n

jbnTjbnT
nanT

0n

nanT

anT

 

----------------------------------------------------------------------------------------------------------------------------- --- 

 

 

 

Solution: 

Given: Analog filter 
9)1.0(

1.0
)(

2 




s

s
sH a  

221

1

22 )cos(21

)cos(

)( 












zezbTe

zbTe1
 

bas

as
                                  

aTaT

aT

 

 

 sec1T 
zezbTe

zbTe1
 

s

s
                                  

aTaT

aT














;
)cos(21

)cos(

9)1.0(

1.0
221

1

2
 

21

21

21.0*211.0

11.0

2

818.07915.11

818.0791.11

;
)3cos(21

)3cos(

9)1.0(

1.0
































zz

0.89566z1
H(z)            

zz

0.9899)z(*0.90481
                       

zeze

ze1
 

s

s

1

1

 

Apply impulse invariant method and find H(z) for 
22)(

)(
bas

as
sH




  

 

Convert analog filter 
9)1.0(

1.0
)(

2 




s

s
sH a

into digital IIR filter using impulse invariant method. 

[Nov/Dec-2015] 
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Solution: 

Given: Analog filter 
36)1.0(

6
)(

2 


s
sH a

 

221

1

2 cos21

sin







 zebTze

bTze

ba)(s

b
         

aTaT

aT

2
 

21

21

1

2

21.0*211.0

11.0

2

818.07374.11

818.08687.0*21

2528.0

36)1.0(

6

)6cos(21

)6sin(

36)1.0(

6
































zz

0.2528z
                                  

zz

z

s
          

 sec.1T Assume

zeze

ze

s
         

1

 

----------------------------------------------------------------------------------------------------------------------------- ---- 

H.W: Challenge 1: An analog filter has a transfer function
107

10
)(

2 


ss
sH a . Design a digital filter 

equivalent to this using impulse invariant method for T=0.2 sec. [Nov/Dec-15] 

Ans : 
1 21 1.0378 0.247

10.2012z
H(z)  

z z



 


 
  

2. An analog filter has a transfer function
6116

5
)(

23 


sss
sH . Design a digital equivalent to this 

using impulse invariant method for T=1 sec. 

3. An analog filter has a transfer function
256

3
)(

2 




ss

s
sH . Design a digital filter equivalent to this 

using impulse invariant method T=1 sec. 

----------------------------------------------------------------------------------------------------------------------------- ---- 

 

Design of IIR filters using Bilinear Transformation: 

Steps to design digital filter using bilinear transform technique: 

1. From the given specifications, find prewarping analog frequencies using formula 
2

tan
2 

T
  

2. Using the analog frequencies find H(s) of the analog filter. 

3. Select the sampling rate of the digital filter, call it T seconds per sample. 

4. Substitute 

















1

1

1

1

z

z

T

2
       s  into the transfer function found in step2. 

----------------------------------------------------------------------------------------------------------------------------- ---- 

 

 

Convert analog filter 
36)1.0(

6
)(

2 


s
sH a

into digital IIR filter whose system function is given 

above. The digital filter should have (𝝎𝒓 = 𝟎. 𝟐𝝅). Use impulse invariant mapping T=1sec. 

Apply bilinear transformation of 
  21

2
)(




ss
sH with T=1 sec and find H(z).[Nov/Dec-13] 
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Solution: 

Given: The system function 
  21

2
)(




ss
sH  

H(z) get to H(s) in 
z

z

T

2
 sstitute       Sub          


















1

1

1

1
 

 
z

z

T

2
s

H(s)H(z)                            




















1

1

1

1  

  
 

z

z

T

2
s

ss
                                    























11

11

21

2
 

Given T=1 sec. 

 
 

 

1

1 1

2

1

2
1

1

1
1 2 2

1 1

3 (4)

1

6 2

1

1

2
                         H(z)  

1 z z
2

z z

2 1 z
                                

z

z
                               

z

                       H(z

 

 










      

      
      










2

1

)

(1 0.33 )

10.166(1 z
)

z










 

----------------------------------------------------------------------------------------------------------------------------- ---- 

 

 

 

Solution: 

Given: Pass band attenuation dBP 3 ; Stop band attenuation dBS 10  

Pass band frequency rad/sec. P  20001000*2   

Stop band frequency rad/sec. S  700350*2   

.sec10*2
5000

1 4
f

1
  T                                   

Prewarping the digital frequencies, we have  

 
rad/sec. 

T

T
                           P

P 7265)2.0tan(10
2

10*2*2000
tan

10*2

2

2
tan

2 4
4

4








 

 
rad/sec. 

T

T
                           S

S 2235)07.0tan(10
2

10*2*700
tan

10*2

2

2
tan

2 4
4

4








 

The order of the filter 

Using the bilinear transformation, design a high pass filter, monotonic in pass band with cut off 

frequency of 1000Hz and down 10dB at 350 Hz. The sampling frequency is 5000Hz. [May/June-16] 
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1  N                          

                                

10
log

                                 

10
log

N                            

0.1

P

S

0.1

P

S

























932.0
5118.0

4771.0

)25.3log(

)3log(

2235

7265
log

110

1

log

110

1

31.0

10

1.0 



 

The first order Butterworth filter for ΩC=1 rad/sec is H(s) = 1/S+1 

The high pass filter for ΩC=ΩP=7265 rad/sec can be obtained by using the transformation. 

s

7265
     S                    

s
      S                    C






 

The transfer function of high pass filter  

  
7265s

s
        

s
sH

s
s








72651

1
)(

 

 
1

1

1

1

1

12

1584.01

7265
1

1
10000

1
0

sin

11

11

410*2

2

1

1































































































z

z10.5792
                                            

z

z

z

z1
0010

                                              

7265s

s
                                                

H(s)H(z)                                        

tiontransformabilinear  gU

1

1

z

z

T
s

z

z
s

 

----------------------------------------------------------------------------------------------------------------------------- --- 

H.W: 1. Determine H(z) that results when the bilinear transformation is applied to Ha(s)=

504.0692.0

525.4
2

2





ss

s
     [Nov/Dec-15]                        Ans:

21

21

5299.018752.11

4479.11783.04479.1
)(










zz

zz
zH  



IIR Filters  Page 16 
 

2. An analog filter has a transfer function 
96

1
)(

2 


ss
sH ,design a digital filter using bilinear 

transformation method. 

----------------------------------------------------------------------------------------------------------------------------- -- 

Additional Examples: 

 

 

 

 

 

 

 

 

Solution: 

 Given data:  

Pass band attenuation 707.0P ; Pass band frequency
2


 P ; 

Stop band attenuation 2.0S ; Stops band frequency
4

3
 S ; 

Step 1: Specifying the pass band and stop band attenuation in dB.  

dB  nattenuatio band Stop

dB  nattenuatio band Pass

S

P

9794.13)2.0log(202log20

0116.3)707.0log(201log20









 
Step2. Choose T and determine the analog frequencies (i.e) Prewarp band edge frequency 

SecRad
T

T

SecRad
T

T

S
S

P
P

/828.4
8

3
tan2

2

4

3

tan
1

2

2
tan

2

/2
4

tan2
2

2tan
1

2

2
tan

2























































































 

Step3.  To find order of the filter 

















































P

s

p

s

N

10

1.0

1.0

10

log

110

110
log





 

Design a digital Butterworth filter satisfying the constraints  











4

3
2.0)

1)

for   H(e                                                     

2
0for        H(e0.707                                        

jw

j

 

With T=1 sec using bilinear transformation. [April/May-2015][May/June-14] 
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8017.1

382.0

6896.0

)414.2log(

20433.0log

414.

945.23

9998.0

2

828.4
log

110

110
log

97.13*1.0

01.3*1.0











































   

   

   

2log

log

    

N

 

Rounding the next higher value N=2 

Step 4: The normalized transfer function   

12

1
)(

2 


ss
sH a

 

Step 5: Cut off frequency  

N
p

p

c 2/1
1.0 )110( 






 

   
SecRadc /2

9998.0

2

110

2

4

1

2*2

1
01.3*1.0







 

Step 6: To find Transfer function of H(s): 

2

)( s
Sa sHH(s)                               




 

2

2 12

1
)(

s
Sss

sH




 

4828.2

4
)(

1
2

2
2

1
2























ss
  sH 

ss
         

2

 

Step 7. Apply Bilinear Transformation with to obtain the digital filter 
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2

2

21221

21

1

12

1

12

1716.01

141656.514

14

4828.2

4

1

1

1

1






































































z

z10.2929
  H(z)                 

zzz

z
                            

ss
                              

H(s)H(z)                      

1

z

z

T
S

2

z

z

T
S

 

----------------------------------------------------------------------------------------------------------------------------- -- 

 

 

 

 

 

 

 

 

Solution: 

 Given data:  

Pass band attenuation 707.0P ; Pass band frequency
2


 P ; 

Stop band attenuation 2.0S ; Stops band frequency
4

3
 S ; 

Step 1: Specifying the pass band and stop band attenuation in dB.  

dB nattenuatio band Stop

dB nattenuatio band Pass

S

P

9794.13)2.0log(202log20

0116.3)707.0log(201log20









 
Step2. Choose T and determine the analog frequencies (i.e) Prewarp band edge frequency 

SecRadT                          

SecRadT                           

SS

PP

/
4

3

/
2











 

Step3.  To find order of the filter 

















































P

s

p

s

N

10

1.0

1.0

10

log

110

110
log





 

Design a digital Butterworth filter satisfying the constraints  











4

3
2.0)

1)

for   H(e                                                     

2
0for        H(e0.707                                        

jw

j

 

With T=1 sec using Impulse invariant method. [Nov/Dec-13] 
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924.3

17609.0

6896.0

)5.1log(

20433.0log

5.1

945.23

9998.0

2

4

3

log

110

110
log

97.13*1.0

01.3*1.0




















































   

   

   

log

log

    

N





 

Rounding the next higher value N=4 

Step 4: The normalized transfer function   

  18477.1176537.0

1
)(

22 


ssss
sH a

 

Step 5: Cut off frequency  

N
p

p

c 2/1
1.0 )110( 






 

   
SecRadc /57.1

9998.0

2

110

2

8

1

4*2

1
01.3*1.0









 

 

Step 6: To find Transfer function of H(s): 

57.1

)( s
Sa sHH(s)                               




 

  
57.1

22 18477.1176537.0

1
)(

s
S

ssss
sH
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  465.2902.2465.2202.1

57.1
)(

1
57.1

8477.1
57.1

1
57.1

76537.0
57.1

1

2

4

22




































































ssss
  sH 

ssss
         

2

 

Step 7:  Using partial fraction expansion, expand H(s) into 

       js

B

js

B

js

A

js

A
sH

45.16.045.16.06.045.16.045.1
)(

**











  

 
 

   
6.045.1

465.2902.26.045.16.045.1

57.1
6.045.1

)(

2

4

6.045.1

jS

ssjsjs
js                    

sH  A                

:A* and A find To

jS









 

 
  

 
      

 
  

 
  
 

j1.7540.7253 A j1.7540.7253  A          

j
              

jjj
               

jjj
                

  
jjjj

                

ssjs
                 

jS























*;

114.7

465.20188.1063.5

465.20188.1

063.5

0188.1465.22.1

57.1

465.27212.07429.174.17425.12.1

57.1

465.26.045.1202.16.045.16.045.16.045.1

57.1

465.2202.16.045.1

57.1

4

4

2

4

2

4

6.045.1

 

 
 

    
45.16.0

45.16.045.16.06.045.16.045.1

57.1
45.16.0

)(

4

45.16.0

jS

jsjsjsjs
js                    

sH  A                

:B* and B find To

jS
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j0.30.7253B*    j0.7253 B          

j
               

jj
                

  
jjj

                

jjjjjj
                 

jS

















;3.0

0187.1468.2

095.2

468.20187.1

57.1

9.285.085.085.085.0

57.1

45.16.045.16.06.045.145.16.06.045.145.16.0

57.1

4

4

4

45.16.0

       45.16.0

3.07253.0

45.16.0

3.07253.0

6.045.1

754.17253.0

6.045.1 js

j

js

j

js

j

js

j1.7540.7253
H(s)         





















 

21

1

21

45.16.045.16.016.045.116.045.1

1

301.01322.01

2307.0454.1

055.0387.01
)(

1

3.07253.0

1

3.07253.0

1

754.17253.0

1
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z
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0.1839z1.454
 zH     

ee

j

ee

j

zee

j

zee

j1.7540.7253
           

ze1

C
H(z)       

 sec1Tfor  know        we

1

jjjj

N

1k
p

k
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------------------------------------------------------------------------------------------------------------------------------------------ 

H.W: Challenge 1: Design a digital Butterworth filter satisfying the constraints  









6.02.0)

2.01)8

for   H(e                                                     

0for        H(e0.                                        

jw

j

 

With T=1 sec using Impulse invariant method. 

Ans: 

1

1 2

0.30109
( )

1 1.048 0.36

z
H z  

z z



 


   

Challenge 2: Design a digital Butterworth filter satisfying the constraints  









6.02.0)

2.01)8

for   H(e                                                     

0for        H(e0.                                        

jw

j

 

With T=1 sec using Bilinear Transformation. 

Ans: 
 

2
1

1 2

0.084 1
( )

1 1.028 0.3651

z
H s    

z z



 




 
 

Challenge 3: Determine the system function H(z) of the lowest order Butterworth digital filter with the 

following specification. 

(a) 3db ripple in pass band  2.00   

(b) 25db attenuation in stop band  45.0  
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Ans: 
 

   

3
1

1 1 2

0.0687 1
( )

1 0.823 1 1.6 0.915

z
H z   

z z z



  




  
 

 

Challenge 4: Enumerate the various steps involved in the design of low pass digital Butterworth IIR filter. (ii) The 

specification of the desired low pass filter is  









32.02.0)

2.01)8

for   H(e                                                     

0for        H(e0.                                        

jw

j

 

Design a Butterworth digital filter using impulse invariant transformation. 

Ans:  

 

 

 

 

 

 

 

 

Solution: 

Given data:  

Pass band attenuation 8.0P ; Pass band frequency  2.0P
; 

Stop band attenuation 2.0S ; Stops band frequency  6.0S ; 

Step 1: Specifying the pass band and stop band attenuation in dB.  

dB nattenuatio band Stop

dB nattenuatio band Pass

S

P

9794.13)2.0log(202log20

938.1)8.0log(201log20









 
Step2. Choose T and determine the analog frequencies (i.e) Prewarp band edge frequency 

dB
T

                          

dB
T

                          

S
S

P
P

75.2
2

6.0
tan2

2
tan

2

649.0
2

2.0
tan2

2
tan

2











































 

Step3.  To find order of the filter 





























p

sCosh

Cosh

N
P

S

1

1.0

1.0
1

110

110




 

21

1

21

1

2869.00358.11

1168.06242.0

5963.0253.01

2747.06242.0
)(



















zz

z

zz

z
zH

Design a chebyshev filter for the following specification using bilinear transformation. 

 

  .0.6     eH                                 

0.20        eH 0.8                         

j

j













2.0

1
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207.1

1228.2

5632.2

2372.4

5273.6

649.0

75.2

562.0

945.23

649.0

75.2

110

110

1

1

1

1

1

938.1*1.0

97.13*1.0
1












































Cosh

Cosh

Cosh

Cosh

 

Cosh

Cosh

 

 

Rounding the next higher integer value N=2 

Step4.  The poles of chebyshev filter can be determined by 

                 cos sin , 0,1, ,k k kS a jb k N     

Where, 








 


N

Nk
k

2

)12( 
     And calculate a, b, ,   

 

75.0

1

,110 1.0









 

1.938*0.1

p

10                                     

 
   

3

75.01

1

21

21







 











0.75     

   

375.0

2

3

2

2

1

2

1

/1/1



























 






a

3
0.649    

a
NN

p
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75.0

2

3

2

2

1

2

1

/1/1
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3
0.649   

b
NN
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0

225
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5
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12)2(2

135
4

3

2*2

12)1(2

2

)12(








 









 









 











1

k 1,2k   ;  
N
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53.0265.0

225sin75.0225

sin75.0cos375.0

2

53.0265.0

135sin75.0135

sin75.0cos375.0

,sincos

1

00

22

1

00

11

jS

j0.375cos    

jS

,kfor 

jS

j0.375cos    

jS

1,kfor 

1,2k   jbaS

1

1

kkK

























 

Step.5  Find the denominator polynomial of the transfer function using above poles. 

  

    
   

3516.05306.0

53.0

53.0

53.0265.053.0265.0)(

22

22









s S       

0.265S        

j0.265S        

jSjSsH

2

 

Step 6 : The numerator of the transfer function depends on the value of N. 

 If N is Even substitute s=0 in the denominator polynomial and divide the result by
21   Find the 

value. This value is equal to numerator 

 

0.28H(s)        

0.35160.3516
                    









22
75.011   
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Step 7:  The  Transfer  function is  

                                  ( )
NM

H s
DM


 

3516.05306.0 


ss

0.28
  H(s)                    

2
 

Step 8: Apply bilinear transformation with to obtain the digital filter 

1

1

2 1
( ) ( )

1

z
H z H s s

T z





 
   

   

 
21

2

1

1

1

1

1

1

1

1

608.0348.11

3516.0
1

1
25306.0

1

1
2

1

1
2

3516.05306.0

1

12
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z

z
s

ss

0.28
                          

z

z

T
s

ss

0.28
  H(z)                    

1

2

2

2

 

==================================================================== 

 

 

 

 

 

Solution: 

Given data:  

Pass band attenuation 8.0P ; Pass band frequency  2.0P
; 

Stop band attenuation 2.0S ; Stops band frequency  6.0S ; 

Step 1: Specifying the pass band and stop band attenuation in dB.  

dB nattenuatio band Stop

dB nattenuatio band Pass

S

P

9794.13)2.0log(202log20

938.1)8.0log(201log20









 
Step2. Choose T and determine the analog frequencies (i.e) Prewarp band edge frequency 

SecRad 
T

                        

SecRad 
T

                          

S
S

P
P

/6.0

/2.0











 

Step3.  To find order of the filter 

Design a chebyshev filter for the following specification using impulse invariance method. 

 

  2016][May/June .0.6     eH                                 

0.20        eH 0.8                         

j

j













2.0

1
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3
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1

1
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938.1*1.0

97.13*1.0
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Cosh

Cosh

Cosh

Cosh

 

Cosh

Cosh

 





 

Rounding the next higher integer value N=2 

Step4.  The poles of chebyshev filter can be determined by 

                 cos sin , 0,1, ,k k kS a jb k N     

Where, 








 


N

Nk
k

2

)12( 
     And calculate a, b, ,   
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,110 1.0
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3
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00

22

1

00

11

jS

jcos0.3    

jS

,kfor 

jS

jcos0.3    

jS

1,kfor 

1,2k   jbaS

1

1

kkK

























 

Step.5  Find the denominator polynomial of the transfer function using above poles. 

  

    
   

33.0513.0

513.05

513.05

513.0256.0513.0256.0)(

22

22









s S       

60.2S        

j60.2S        

jSjSsH

2

 

Step 6 : The numerator of the transfer function depends on the value of N. 

 If N is Even substitute s=0 in the denominator polynomial and divide the result by
21   Find the 

value. This value is equal to numerator 

 

64

75.01

3

1

3

22

0.2H(s)        

0.30.3
                    









  

Step 7:  The  Transfer  function is  

                                  ( )
NM

H s
DM
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33.0513.0

64




ss

0.2
  H(s)                    

2
 

Step 8: Using partial fraction expansion, expand H(s) into 

   

   514.0256.0

257.0

514.0256.0
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514.0256.0514.0256.033.0513.0
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Step 9: Now transform analog poles {Pk} into digital poles {epkT} to obtain the digital filter 

21

1513.0256.01513.0256.0

2

1 1

1 1

5987.03483.11
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1

1
)(







 

 




















zz

0.1954z
 H(z)  

zees

j

zees

j
        

ze

A
         

ze

A
zH

1

TjTTjT

k Tp

k

N

k Tp

k

k

k

 

===================================================================== 

H.W: Challenge 1: Design a chebyshev filter to meet the constraints by using bilinear transformation 

and assume sampling period T=1 sec. 

 

  .0.     eH                                 

0.20        eH                          

j

j













51.0

1
2

1

 

 

Solution: 

Ans: 
 

2

1 2

0413

1 1.44 0.675

10. 1 z
H(z)  

z z



 




 
 

=============================================================== 

H.W: Convert the following analog filter with transfer function 
  162.0

2.0
)(

2





s

S
sH a using bilinear 

transformation.  Ans: 
1 2

1 2

0.105 0.0192 0.0864
( )

1 1.155 0.9232

z z
H z

z z

 

 

 


   
Find the order and poles of a low pass Butterworth filter that has 3dB bandwidth of 500Hz and attenuation of 

40dB at 1kHz. 
=============================================================== 

Filter design using frequency translation (HPF, BPF, BRF): 

 A digital filter can be converted into a digital high pass, band stop or another digital filter. These 

transformations are given below. 

 



IIR Filters  Page 29 
 

Low pass to Low pass Low pass to high pass 
1

1

1

'

'

1

sin ( ) / 2

sin ( ) / 2

p p

p p

z
z

z

where
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passband frequency of lowpass filter

passband frequency of new lowpass filter









 

1
1

1

'

'

1

cos ( ) / 2

cos ( ) / 2

p p

p p

z
z

z

where





 


 






 
   

 

   
  

'

p

p

passband frequency of lowpass filter

passband frequency of highpass filter









 

Low pass to Band pass Low pass to Band Stop 

 
 

2 1

1

2 1

2 1

1 1

1 2
1

1 1

cos ( ) / 2

cos ( ) / 2

cot tan
2 2

u l

u l

pu l

k k
z z

k k
z

k k
z z

k k

where

k
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l

upper cutoff frequency

lower cutoff frequency








 

 
 

2 1

1

2 1

2 1

1 1
1 2

1
1 1

cos ( ) / 2

cos ( ) / 2

tan tan
2 2

u l

u l

pu l

u

l

k
z z

k kz
k

z z
k k

where

k

upper cutoff frequency

lower cutoff frequency





 


 

 





 



 


 

 


 
 






 
  

 





 

============================================================================ 

Analog Domain: 

 The frequency transformation can be used to design on LPF with different pass band frequency HPF,BPF 

and BSF from a normalized Low pass filter ΩC=1 rad/sec. 

Low pass to Low pass Low pass to high pass 

C

S
S


  

S
S C
  

Low pass to band pass Low pass to band stop 

 lu

ul

2

s

s
         s






 
 

 

 lu

ul

lu

ul

r

B

A

BA













2

2

2

1

2

1

,min

 

 

   

 

ul

lu

ul

lu
r

ul

2

lu

B

A                     BA

s

s
  s
















2

2

2

2

1

1,min  

===================================================================== 

H:W: 1. Design a digital chebyshev filter         
 

  











0.5for     eH0

0.20for       eH

j

j

1.0

1
2

1

 

by using bilinear transformation and assume period T=1 sec. 
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Ans :  

 
21

21

2 675.044.11

1

3.04172.0
;2













zz

z0.0413
H(z)  ;      

ss

0.212
H(s)      N  

2. Enumerate the various steps involved in the design of low pass digital Butterworth IIR filter. 

  
 
  











322.0

18.0

0.for     eH       

0.20for       eH

j

j

 

Design Butterworth digital filter using impulse invariant transformation. 
Ans: 

  

21

1

21

1

22

2869.003582.11

1168.06242.0

5963.0253.01

2747.06242.0

4565.02485.14565.05171.0

084
;4






















zz

z

zz

z
H(z)

  ;      
ssss

0.2
H(s)      N

  

3. Design a chebyshev low pass filter with the specifications dBs 1  ripple in the pass band 

15dBs   ,2.00 ripple in the stop band  3.0 , using (a) Bilinear transformation (b) 

Impulse invariance.  
(a) Bilinear transformation: 
Ans:  

  
 

  2121

41

22

6493.05548.118482.0499.11

1680

1180.04378.04165.01814.0

04381
;4













zzzz

z310.0
H(z)  

;      
ssss

0.
H(s)      N

 

(b) Impulse invariance: 
Ans: 

  

21

1

21

1

22

655.056.11

0238.0083.0

839.049.11

0245.08

11.0423.0391.0175.0

03834
;4






















zz

z

zz

z30.0
H(z)  

;      
ssss

0.
H(s)      N

 

4. Use the backward difference for the derivative to convert the analog low pass filter with system function. 

  2

1
)(




s
sH

  

Ans: 
13

1
)(




z
zH

 

5. For the analog transfer function determine H(z) using impulse invariant technique. Assume T=1sec. 

   21

1
)(




ss
sH

      Ans: 
21

1

0498.05032.01

2326.0
)(








zz

z
zH

 [May/Jue-2016] 

6. Determine H(z) using the impulse invariant technique for the analog transfer function. 

   25.05.0

1
)(

2 


sss
sH

       

Ans: 




































 21

1

21

1

1 606.0277.01

7663.0
0898.0

606.0277.01

1385.01
5.0

6065.01

5.0
)(

zz

z

zz

z

z
zH

 

7. Using bilinear transformation obtain H (z) if 
2)1(

1
)(




s
sH

 and T=0.1s.   Ans:
21

21

)9048.01(

)1(0476.0
)(










z

z
zH
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8. 

Convert the analog filter with system function 
9)1.0(

1.0
)(

2 




s

s
sH   into a digital IIR filter using 

bilinear transformation. The digital filter should have a resonant frequency of .
4


 r [Nov/Dec-2015] 

21

21

177.884.11572.8

973.0027.01
)(










zz

zz
zH  

9. A digital filter with a 3 dB bandwidth of 0.25π is to be designed from the analog filter whose 

system response is 
cs

c
sH




)(  . Use bilinear transformation and obtain H(z). [Nov/Dec-15]  

1

1

414.1414.3

1
)(










z

z
zH  

****************************************************************************************************************** 

 

Solution: 

Solution: 
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1
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1
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we know H j
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0.1

1
0.1 2
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Prove that 
1 10.1 0.12 2(10 1) (10 1)p s

p s
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UNIT – III  FINITE  IMPULSE  FILTERS 

 

 

 

 

 

 

Introduction: 

 A digital filter is just a filter that operates on the digital signals. 

Types: 

 FIR filter design 

 IIR filter design 

FIR filter: 

The digital filter which designed using finite number of response co-efficient is called as finite impulse 

response filters. 

)(...........).........(),( )1(1 nhnhnh No   

Advantages: 

1. FIR filters have exact linear phase. 

2. FIR filters are always stable. 

3. FIR filters can be realized in both recursive and non-recursive structure. 

4. FIR filters with any arbitrary magnitude response can be tackled using FIR sequence. 

Disadvantages: 

1.   For the same filter specification the order of the FIR filter design can be as high as 5 to 10 times     that 

of an IIR filter. 

2.    Large storage requirement needed. 

3.    Powerful computational facilities required for the implementation. 

Linear Phase (LP) FIR Filters: 

 

 

The transfer function of a FIR causal filter is given by 
1

0

(z) ( )
N

n

n

H h n z






  

Where h(n) is the impulse response of the filter. 

The Fourier transform of h(n) is 
1

0

(e ) ( )
N

j j n

n

H h n e 






 , 

Which is periodic in frequency with period 2 . 
 

(e ) | (e ) |
jj jH H e
   

   

Where (e )jH 
is magnitude response and  (  ) is phase response. 

We define the phase delay and group delay of a filter as 

   
;p g

d
and

d

   
 

 

 
  ---------------------------------------->(1) 

For FIR filters with linear phase we can define 

   ( ) ;          ------------------------------------------------>(2) 

Where   is a constant phase delay in samples. 

Design of FIR filters - symmetric and Anti-symmetric FIR filters - design of linear phase FIR filters using 

Fourier series method - FIR filter design using windows (Rectangular, Hamming and Hanning window), 

Frequency sampling method. FIR filter structures - linear phase structure, direct form realizations  

 

 

Derive the condition for Linear Phase (LP) FIR Filters. [Nov/Dec-2009] 

 



2 
 

Substitute: equation 2 in 1, we have  p =  g= , which means that   is independent of frequency. We can 

write, 

 
1

0

( ) | (e ) |
N

jj n j

n

h n e H e
  






   

Which gives us, 
1

0

( )cos | (e ) | cos ( )
N

j

n

h n n H   




     ------------------------------->(3) 

and                        
1

0

( )sin | (e ) | sin ( )
N

j

n

h n n H   




   ---------------------------------->(4) 

By taking ratio of equation (3) to equation (4), we obtain 
1

0

1

0

( )sin
sin

;[ ( ) ]
cos

( )cos

N

n

N

n

h n n

h n n




  












  



------------------------------>(5) 

After simplifying equation (5) we have 
1

0

( )sin( n) 0
N

n

h n  




  ------------------------------------------------->(6) 

Equation (6) will be zero when 

( ) ( 1 )h n h N n   ------------------------------------------------------->(7) 

And      
1

2

N



 ------------------------------------------------------------------>(8) 

Therefore, FIR filters will have constant phase and group delays when the impulse response is symmetrical 

about 
1

2

N



  

The impulse response satisfying equation (7) & (8) for odd and even values of N. When N=7 the centre of 

symmetry of the sequence occurs at third sample and when N=6, the filter delay is 
1

2
2

samples. 

If only constant group delay is required, and not the phase delay we can write 

 (  )=  -    

Now we have 
 

(e ) | (e ) |
jj jH H e
   

   

Equation (9) can be expressed as 

 
1

0

( ) | (e ) |
N

jj n j

n

h n e H e
  






  -------------------------------------->(9)

 
 

which gives us 
1

0

( )cos | (e ) | cos( )
N

j

n

h n n H   




   ---------------------------->(10) 

and                          
1

0

( )sin | (e ) | sin( )
N

j

n

h n n H   




    ------------------------------>(11) 

By taking ratio of equation (11) to (10), we get 
1

0

1

0

( )sin
sin( )

cos( )
( )cos

N

n

N

n

h n n

h n n


 

 



















 

From which we obtain 
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1

0

( )sin ( n) 0
N

n

h n   




   ------------------------------------------>(12) 

If 
2


  , Equation  (12) becomes, 

1

0

( ) cos( n) 0
N

n

h n  




  ------------------------------------------------->(13) 

The equation 13 will be satisfied when  ( ) ( 1 )h n h N n    

And 
1

2

N



  

Therefore, FIR filters have constant group delay, g  and not constant phase delay when the impulse response 

is anti-symmetrical about
1

2

N



 . 

Example: 

For N=6  symmetry)of centre
N

(
2

1
2

2

16

2

1






  

 

 

 

 symmetry)of centre(  

 

 

 

 

 

 

0           1          2         2.5        3          4          5 

For N=7 

For N=7  symmetry)of centre
N

(3
2

17

2

1








 
 symmetryof centre  

 

 

  0        1     2       3      4                      n 

Linear Phase FIR Filter: 

An FIR filter has linear phase if its unit sample response satisfies the condition 

1...N0,1,2.....n                    n);1h(Mh(n)   

Case (i): Symmetric impulse response for “N is ODD”: 

 

 

 

The frequency response of impulse response can be written as, 
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njj enhe
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 -------------------------->(1) 

 jjj ezzHeHez  wheren,1Mn Let  )()(  

Determine the frequency response of FIR filter with symmetric impulse response and the order 

of the filter is “N is Odd”. 
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(2) equation above in relation this ing substitutn),1h(Mh(n) response, impulse al symmetrica For   
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as expressed be can eH ofform polar The j )( 
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as given is H(e of e  Magnitud j )  
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============================================================================ 

Case (ii) : Symmetric Impulse Response For –“N is EVEN”: 

 

 

 

The frequency response of impulse response can be written as, 
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(2) equation above in relation this ing substitutn),1h(Mh(n) response, impulse al symmetrica For   
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Determine the frequency response of FIR filter with symmetric impulse response and the 

order of the filter N is Even. [Nov/Dec-2013] 

 “N is Even”. 
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============================================================================= 

Case (iii) : Antisymmetric for “N is ODD”: 

 

 

 

For this type of sequence 
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The frequency response of impulse response can be written as, 
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Determine the frequency response of FIR filter with Antisymmetric impulse response and the order 

of the filter N is Odd. 
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Case (iv) : Antisymmetric For –“N is EVEN”:  

 

 

 

The frequency response of impulse response can be written as, 
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============================================================================= 

Structures of FIR Filters: 

 

 

The realization of FIR filter is given by 

 Transversal structure. 

 Linear phase realization 

 Polyphase realization. 

Transversal structure: 

 It contains two forms of realization such as, 

Determine the frequency response of FIR filter with Antisymmetric impulse response and 

the order of the filter N is Even. [Nov/Dec-2013] 

 

Explain with neat sketches the Structure of FIR filters. [Nov/Dec-2012] 
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 Direct form realization 

 Cascade form realization. 

Direct form realization: 

The system function of an FIR filter can be written as 

 

This structure is known as direct form realization. It requires N multipliers, N-1 adders, and N-1 delay 

elements. 

 

 
Cascade Realization: 

 

 

 

Solution: 

Given: The system function is 
54321 854621)(   zzzzzzH  

)(8)(5)(4)(6)(2

854621

54321

54321

zXzzXzzXzzXzzXzX(z) Y(z)                                 

zzzzz
X(z)

Y(z)
H(z)                       








 

      Y(z) 

 

 

     

Solution: 

1

0

1 2 (N 1)

1 2 (N 1)

(z) (n) z

(0) h(1) z (2) z .......... (N 1) z                     eq(1)

Y(z)=h(0)X(z)+h(1)z (z) h(2)z (z) ....... (N 1) z (z)   eq(2)       

N
n

n

H h

h h h

X X h X






   

   



     

   



1z  
1z  

1z  
1z  

+ + + + 

X(z) 

1 
2 6 4 5 

 

Z-1 

1z  
1z  

1z  
1z  

+ + + + 

X(z) 

h(0) 
h(1) h(2) h(N-2) h(N-1) 

Y(z) 

 

Problem 1:  Determine the direct form Realization of the following system function. (Nov/Dec-14) 

54321 854621)(   zzzzzzH  

Problem 2: Obtain the cascade realization of system function 

(May/June-12) (Nov/Dec-10) 

1 2 1 2(z) (1 2z )(1 )H z z z       
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The equation (1) and equation (2) can be realized in direct form and can be cascaded as shown in figure. 

 
H.W 1 : Obtain the direct form realization for the following system function. 
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H.W 2: Obtain the cascade form realization for the following system function. 
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1
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5
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Solution: 

By inspection we find system function H(z) is that of a linear phase FIR filter and, 

                h(n)=h(N-1-n) 

 Therefore, we can realize the system function as shown in Figure. 

 
Lattice Structure: 

The lattice structure formulas are, 

)1()()()(
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**************************************************************************************** 
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1 2 1 2
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1 22
2 2 2 2

2

(z) H (z) H (z)

Where  H (z) 1 2z  and H (z) 1 z
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H (z) (z) (z) 2z (z) (z)                        eq(1)

(z)
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H (z) (z) (z) z (z) (z)                       

(z)

H

z z

Y
Y X X z X

X

Y
Y X X z X

X

   

 

 



     

    

       eq(2)

Obtain the linear phase realization of the system function.   [Nov/Dec-10]  

 

 

  1 2 3 4 5 61 1 1 1 1

2 3 4 3 2
H z z z z z z z           

Consider an FIR lattice filter with co-efficients 
4

1
;

3

1
;

2

1
321  KKK   . Determine the FIR filter for the 

direct form structure. [Nov/Dec-2013] [Nov/Dec-2015] 
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Solution: 

Given: The FIR lattice filter with co-efficients are 
4

1
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3

1
;

2

1
321  KKK    
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We know, 
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For m=2 and K=1 
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4
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)1(;1)0( 333  3 are scoeficientfilter  lattice The  

--------------------------------------------------------------------------------------------------- 
H.W: Realize the following system in lattice form.   [May/June-07] 

4 3 2
( ) 2 ( ) ( 1) ( 2) ( 3)

5 2 3
y n x n x n x n x n        

Design of FIR Filter: 

FIR Filter can be designed using three following techniques. 

1. Fourier series method 

2. Windowing technique 

3. Frequency sampling method. 

Filter design using windowing technique: 

 

The desired frequency response of any digital filter is periodic in frequency and can be expanded in a 

Fourier series. 







n

   nj

d

j

d enheH  )()( ------------------------------------------------------>(1) 

 ,Where  

 






 


 d eeHnh njj

d )(
2

1
)( ------------------------------------------------>(2) 

Gibb’s Phenomenon: 

Explain the designing of FIR filters using windows. [April/May-2011] 
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One possible way of finding an FIR filter that approximates )( jeH would be truncate the infinite Fourier 

series at 






 


2

1M
n  . Abrupt truncation of the series will lead to oscillation both pass band and stop band. 

This phenomenon is known as Gibbs phenomenon. 

Types of window: 

 Rectangular window. 

 Hanning window. 

 Hamming window. 

Rectangular window: 

The rectangular window sequence is given by, 

 














 








 




otherwise. for      

M
n

1M
 for       

nwR

0

2

1

2
1

)(

 
Hanning window: 

The hanning window sequence can be obtained by 

 














 








 







otherwise. for      

M
n

1M
 for       

M

n

nwHn

0

2

1

21

2
cos5.05.0

)(



 

Hamming window: 

The hamming window can be obtained by 

 














 








 







otherwise. for      

M
n

1M
 for       

M

n

n wHm

0

2

1

21

2
cos46.054.0

)(



 

Filter coefficient (hd(n) ) for different types of Filters: 

Type of Filter hd(n) 

LPF 



















nfor 
n

n
nh

nfor nh

C
d

C
d
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)(sin
)(
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HPF 

  














nfor nn
n

nh

nfor nh
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C
d

)sin()sin(
)(

1
)(

1)(

 

BPF 

  

















nfor nn
n

nh

nfor nh

CCd

CC
d

)(sin)(sin
)(

1
)(

)(
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BSF 
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CCd
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d

)sin()(sin)(sin
)(

1
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Solution: 

Given: 


























2
   for  

22
  for 

eH j

d

0

1

)(

 

Hence .
2


 C

 

Step 1: To find filter coefficient. 

)(nhd  




 


 d eeH njj )(
2

1
 

 


 2

2

.1
2





 


 d e
1

 nj  

 0       
n

n C 



 




;

)(

)sin(

 

)(nhd  5n5   
n

n

 ;2
sin





 

;n For 0  )0(dh  
)0(

)0(
2

sin





  

 

2

2
sin

n

n

2

1
 







    

1
sin

lim
0


 





 

  )0(dh     
2

1


 

;n For 1  3183.0
1

)1(

)1(
2

sin

)1()1( 




dd hh

 
2;n For   0

2

sin
)2()2( 




dd hh

 

;3n For  106.0
3

2

3
sin

)3()3( 




dd hh

 

4;n For   0
4

2sin
)4()4( 




dd hh

 

5;n For   06366.0
5

2

5
sin

)5()5( 




dd hh  

Step 2: To find hanning window: 















 








 







otherwise. for      

M
n

1M
 for       

M

n

nwHn

0

2

1

21

2
cos5.05.0

)(



 

Design an ideal low pass filter with a frequency response 


























2
   for  

22
  for 

eH j

d

0

1

)(  

Find the values of h(n) for  M=11 using hanning window. Find H(z). Plot the magnitude and frequency response. (May/June-

14)(Nov/Dec-14) (April/May 2011)(April/May-08) (Nov/Dec-09) (Nov/Dec-10) 
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  55
10

2
cos5.05.0  n for       

n
 



 

0;n For   1
5

)0(
cos5.05.0)0( 


Hnw  

;n For 1  9045.0
5

)1(
cos5.05.0)1()1( 


HnHn ww  

;n For 2 ` 6545.0
5

)2(
cos5.05.0)2()2( 


HnHn ww  

;n For 3  3454.0
5

)3(
cos5.05.0)3()3( 


HnHn ww  

;n For 4  0954.0
5

)4(
cos5.05.0)4()4( 


HnHn ww  

;n For 5  0
5

)5(
cos5.05.0)5()5( 


HnHn ww

 Step 3: To find filter coefficients using hanning window are 

5n5 for     nwnhh(n) Hnd  )(*)(  

5.01*)5.0()0(*)0(  Hnd whh(0)  

2879.09045.0*3183.0)1(*)1(1  Hnd wh)h(  

06545.0*0)2(*)2(2  Hnd wh)h(  

0366.03454.0*106.0)3(*)3(3  Hnd wh)h(  

00606.00954.0*0636.0)4(*)4(4  Hnd wh)h(  

065.0*0)5(*)5(5  Hnd wh)h(  

Step 4: The transfer function of the filter is given by 

  

 

         

 

 

5.0)5(;)10()7()3(

006.0006.00366.00366.0287.0287.05.0)('

006.0006.00366.00366.0287.0287.0

)()('

006.0006.00366.00366.0287.0287.0

)5()4()3()2(

)(

)(

9182645

443311

2

1

443311

554433221

5

1










































h0.287h(6)h(4)0.0366;h(8)h(2)0.006;h(9)h(1)0,hhhh(0)

by given are filter causal of tscoefficien filter The

zzzzzzzzH

zzzzzz0.5z          

zHzzH

 is filter realizable the of function transfer The :5 Step

zzzzzz0.5        

zzhzzhzzhzzhzzh(1)0.5         

zznh0.5         

zznhh(0)H(z) 

5

M

1

n

nn

2

1M

1n

nn
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4cos12.03cos072.0cos12.05.0

5cos)5(4

cos)()(

12.0006.0

072.0036.0

0

12.0)006.0(2

5.0)5(

,

cos)()(

5

0

5

0





































 
















             

aa(4)cosa(3)cos3a(2)cos2a(1)cosa(0)              

nnaeH  

02h(0)5)2h(5a(5)         

*22h(1)4)2h(5a(4)         

*22h(2)3)2h(5a(3)         

2h(3)2)2h(5a(2)          

2h(4)1)2h(5a(1)          

n
2

1M
2ha(n)           

h
2

1M
ha(0)            

where

nnaeH                             

y b given is responsefrequency  The :6 Step

n

j

n

j

 
Magnitude in dB is calculated by varying 0 to 10 and tabulated below. 

degree) in(  0 1 2 3 4 5 

)( jeH


 
0.812 0.8115 0.810 0.8083 0.8054 0.8018 

dB

jeH )(   -1.8 -1.814 -1.83 -1.85 -1.88 -1.91 

==================================================================================== 

 

 

 

 

 

 

Solution: 

Given : 

Hence
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Step 1: To find filter coefficient. 

)(nhd  




 


 d eeH njj )(
2
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)(nhd    





 n fornn
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C)sin()sin(
)(
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)(nhd   5n5   

n
n
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4
sinsin
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:2 Step  
















4
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 for    

4
 for   

eH j

d

Design an ideal high pass filter with a frequency response
















4
0

1

)(









for     

4
for    

eH                                    j

d  

Find the values of h(n) for  N=11 using hanning window. (May/June-16)(April/May-08) 
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0n For   









4

)0(
sin)0sin(

)0(

1
)0(





dh  

gU sin , rule hospitalL'  75.0
4

1
1)0( dh  

1;n For   225.0
4

)1(
sin)1sin(

)1(

1
)1()1( 














dd hh  

2;n For   159.0
4

)2(
sin)2sin(

)2(

1
)2()2( 














dd hh  

;n For 3  075.0
4

)3(
sin)3sin(

)3(

1
)3()3( 














dd hh  

;n For 4  0
4

)4(
sin)4sin(

)4(

1
)4()4( 














dd hh  

;n For 5  045.0
4

)5(
sin)5sin(

)5(

1
)5()5( 














dd hh  

Step 2: Using Hanning window: 















 








 






otherwise                         

M
n

2

1M
 

M

n

nwHn

0

2

1
,

1

2
cos5.05.0

)(



 

15.05.0)0( Hnw  

9045.0
5

)1(
cos5.05.0)1()1( 











HnHn ww  

655.0
5

)2(
cos5.05.0)2()2( 











HnHn ww  

345.0
5

)3(
cos5.05.0)3()3( 











HnHn ww  

0945.0
5

)4(
cos5.05.0)4()4( 











HnHn ww  

0
5

)5(
cos5.05.0)5()5( 











HnHn ww  

Step 3: The filter coefficients using hanning window are, 

5n5 for    nwnhh(n) Hnd  )()(  

0)0)(75.0()0()0(  Hnd whh(0)  

204.0)905.0)(225.0()1()1(1  Hnd wh)h(  

104.0)655.0)(159.0()2()2(2  Hnd wh)h(  

026.0)345.0)(075.0()3()3(3  Hnd wh)h(  

0)8145.0)(0()4()4(4  Hnd wh)h(  

0)0)(045.0()5()5(5  Hnd wh)h(  

Step 4: The transfer function of the filter is given by 

is filter realizable the of function transfer The  

(z)H'  )(zHz 2

1M







 


  

 332211 026.0026.0104.0104.0204.0 zzzzz0.204z0.75 z 5  
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Hzzzzz0.204z0.75z 5 283746 026.0026.0104.0104.0204.0  

 H(z)   





 
2

1M

1n

nn zznhh(0) )(

 

 


 
5

1

)(
n

nn zznhh(0)  

         554433221 )5()4()3()2( zzhzzhzzhzzhzzh(1)0.75 1  

 332211 026.0026.0104.0104.0204.0 zzzzz0.204z0.75  

 

are tscoefficien filter causal The  

0;h(10)h(9)h(1)h(0)   

0.026h(8)h(2)   

0.104h(7)h(3) 

 

0.204h(6)h(4)   

0.75h(5)   
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1

0
cos)()

M

n

j nnaH(e      

75.0)5(
2

1
)0( 







 
 h

M
ha  

)5(2
2

1
2 nhn

M
ha(n) 











  

  408.0)4(2  h152ha(1)  

  208.0)3(222  h52h)a(  

  052.0)2(233  h52h)a(  

  0)1(244  h52h)a(  

  0)0(255  h52h)a(  

 3cos052.02cos208.0cos408.075.0)( 


jeH  

degrees) (in   0 1 2 3 4 5 

)( jeH


 0.082 0.0822 0.083 0.08433 0.08615 0.08848 

dB

jeH )(   -21.72 -21.70 -21.61 -21.480 -21.29 -21.11 

 

b) Using Hamming window: 

The hamming window sequence is given by 

 














 








 















otherwise                

M
n

2

1M
 for 

M

n

nwHm
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otherwise                
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55;
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cos46.054.0
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 1)0( Hmw  
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 912.0)1()1(  HmHm ww  

 682.0)2()2(  HmHm ww  

 398.0)3()3(  HmHm ww  

 1678.0)4()4(  HmHm ww  

 

08.0)5()5(  HmHm ww

 

are,  sequence windowhamming using tscoefficien The  

 5);(*)(  n5  nwnhh(n) Hmd  

 75.075.0*1)0(*)0()0(  Hmd whh  

 2052.0)912.0(*)225.0()1(*)1()1(  Hmd whh  

 1084.0)682.0(*)159.0()2(*)2()2(  Hmd whh  

 03.0)398.0(*)075.0()3(*)3()3(  Hmd whh  

 0)16787.0(*)0()4(*)4()4(  Hmd whh

 

 

0036.0)08.0(*)045.0()5(*)5()5(  Hmd whh

 

by given is filter the of function transfer The  

H(z)  
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1M

1n

nn zznhh(0) )(  

     


 
5

1

)(
n

nn zznhh(0)  

             554433221 )5()4()3()2( zzhzzhzzhzzhzzh(1)0.75 1  
 

    
5533221 0036.00036.003.003.01084.01084.02052.0 zzzzzzz0.2052z0.75 1  
 

 is filter realizable the of function transfer The  

(z)H' )(zHz 2

1M







 


  

 

 5533221 0036.00036.003.003.01084.01084.02052.0 zzzzzzz0.2052z0.75z 15  

 

0036.00036.003.003.01084.01084.02052.0)(' 102837465   zzzzzz0.2052z0.75z  zH  

are filter causal of tscoefficien filter The  

0.2052;h(6)h(4)0.1084;h(7)h(3)0.03;h(8)h(2)0;h(9)h(1)0.0036;h(10)h(0)   

0.75h(5) 
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1

0

cos)()

M

n

j nnaH(e   

75.0)5(
2

1
)0( 







 
 h

M
ha  

)5(2
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1
2)( nhn

M
hna 











  

4104.0)4(2)15(2)1(  hha  

2168.0)3(2)25(2)2(  hha  

06.0)2(2)35(2)3(  hha  

0)1(2)45(2)4(  hha  

0072.0)0(2)55(2)5(  hha  
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 5cos0072.03cos06.02cos2168.0cos4104.075.0)( 


jeH  

degrees) (in   0 30 60 90 120 150 180 

)( jeH


 
0.07 0.28 0.7168 0.9668 1 1.003 1.0108 

dB

jeH )(   -23.1 -11 -2.89 -0.29 0 0.028 0.093 

===================================================================================== 

H.W: 1. Design a filter with 
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. Using a Hamming & Hanning window 

with N=7 

 

2. Design a filter with 




























2
0

22
)(

5

         

e

eH

       ,j

j

d . Using a Hamming & Hanning window with 

N=11. 

3. Design an FIR filter for the ideal frequency response using hamming window with N=7. 
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*************************************************************************************** 

 

 

 

 

 

 

 

Solution: 

Given: 
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Hence .;
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Step 1: To find filter coefficient. 

  )(nhd  




 


 d eeH njj )(
2

1
 

    2

2

.1
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 d e

1
 nj

 

          
n

n C ;
)(

)sin(








    0

 

For a FIR linear phase digital filter approximating the ideal frequency response 

 























6
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6
1

)(

         

eH

      ,

j

d  

Determine the coefficients of a 5 tap filter using rectangular window. 
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)(nhd     
n

n

;6
sin





 22  n  

For n=0:   )0(dh  
)0(

)0(
6

sin





  

   

6

6
sin

6 n

n
1

 




  

  )0(dh
 

16.0
6

1
    1

sin
lim

0


 



  

for 1n
 

159.0
5.0

)1(

)1(
6

sin

)1()1( 




dd hh  

2;n For   1379.0
2

6

)2(
sin

)2()2( 




dd hh

 Step 2: Using Rectangular window: 

)(nwR
 















 








 




otherwise. for      

M
n

1M
 for       

0

2

1

2
1

 

 2n2 for     1   

1)2()1()0(  RRR www

 Step 3: To find filter coefficients using rectangular window are 

22)(*)(  n for     nwnhh(n) Hnd  

16.01*)16.0()0(*)0(  Hnd whh(0)  

59.01*59.0)1(*)1(1  Hnd wh)h(  

137.01*137.0)2(*)2(2  Hnd wh)h(  

Step 4: The transfer function of the filter is given by 

H(z)    






2

1M

1n

nn zznhh(0) )(  

  



2

1

)(
n

nn zznh0.5  

    221 )2(16.   zzhzzh(1)0 1
 

 
2211 137.0137.059.059.016 zzzz0.  

 

 is filter realizable the of function transfer The :5 Step  

)(' zH  
 

)(2

1

zHz
M 



  

  22112 137.0137.059.059.016 zzzz0.z  
 

)(' zH  137.0137.059.059.016 4312   zzzz0.  

by given are filter causal of tscoefficien filter The  

0)5(12593137.0)4(  h6;0.)h(;0.)h(h(1),hh(0)

 



19 
 

)jH(e 





2

1

0
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32.0)2(
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1
)0( 
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 )2(2
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1
2)( nhn

M
hna 











  

18.1)1(2)12(2)1(  hha  

274.0)0(2)22(2)2(  hha  

 2cos274.0cos18.132.0)( jeH  

degrees) (in   0 30 60 90 120 150 180 

)( jeH


 

1.774 1.47 0.773 0.046 -0.407 -0.564 -0.586 

===================================================================== 

 

 

 

 

 

Solution: 

Given: 
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Step 1: Filter coefficients are, 
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  C2C  and 

Design an ideal band pass filter with a frequency response 
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Find the values of h(n) for N=11 using rectangular window. 

 



20 
 

Step 2: Using rectangular window 

1)5()4()3()2()1()0(
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Step 3: Filter coefficients using rectangular window 
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00*1)4(*)4()4(
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Step 4: The transfer function of the filter is 

 

Step 5: The transfer function of the realizable filter is 
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are filers causal the of tscoefficien filter The
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 2cos6366.05.0)(

0)0(2)55(2)5(

0)1(2)45(2)4(

0)2(2)35(2)3(

6366.0)3(2)25(2)2(

0)4(2)15(2)1(














jeH

hha

hha

hha

hha

hha

 

degrees) (in   0 30 60 90 120 150 180 

)( jeH


 
-0.1366 0.1817 0.818 1.1366 0.818 0.1817 -0.1366 

dB

jeH )(   -17.3 -14.8 -1.74 1.11 -1.74 -14.8 -17.3 

==================================================================== 

 

23183.0 









 

z0.3183z0.5             
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Solution: 

Given: 
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Step 1: Filter coefficients are, 

 

Step 2: Using rectangular window 
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2n2for      1                                 

otherwise.for       
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Step 3: Filter coefficients using rectangular window 

3

2

3
1





  C2C  and 

 

0
)5(

sin
3

2
sin

3
sin

)5()5(

1378.0
)4(

sin
3

2
sin

3
sin

)4()4(

0
)3(

sin
3

2
sin

3
sin

)3()3(

2757.0
)2(

sin
3

2
sin

3
sin

)2()2(

0
)1(

sin
3

2
sin

3
sin

)1()1(

667.0)0(

sin
3

2
sin

3
sin

1

)sin()(sin)(sin
)(

1
)( 21



















































































n
nn

hh

n
nn

hh

n
nn

hh

n
nn

hh

n
nn

hh

h

0;nFor 

n
nn

n
         

nnn
n

nh

dd

dd

dd

dd

dd

d

CCd

Design an ideal band Reject filter with a frequency response Find the values of h(n) for N=11 using rectangular window. 
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Step 4: The transfer function of the filter is 

 

 

 

 

 

Step 5: The transfer function of the realizable filter is 
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Solution: 

Given 
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Design a high pass filter using window, with a cut-off frequency of 1.2 radians/sec and N=9. [Nov/Dec-2016] 
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The impulse response of a high pass filter with a cut off frequency is 

 

 

Hamming window for  

 

 

 

 
The casual filter coefficients are 
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=====================================================================

 

H.W: Design an ideal differentiator with frequency response   using hamming window with 

N=8. (April/May-15) 

============================================================================= 

Frequency Sampling Method:( April/May-15) 

 

 

Generally, FIR filter can be specified by giving impulse response coefficients h(n) (or) DFT coefficients 

H(k). 







1

0

2

)(
N

k

N

knj

ekH
N

1
h(n)



-------------------------------> (1) 









1N

0n

N

knj

h(n)eH(k)
2

----------------------------------> (2) 

 samplesDFTH(k)  

N

knj

ez
H(z)H(k) 2


 --------------------------------------> (3) 

and    





1N

0n

nh(n)zH(z) --------------------------------------> (4) 

(4) in (1) Put    



















1

0

1

0

2

)(
1

)(
N

n

n
N

k

N

knj

zekH
N

zH


 

jez If     )() zHH(e j 
  











N

k
k




2
  where frequency. samplingk   

General steps to design FIR filter using frequency sampling method [type-I design]: 

Step 1: Draw the filter graph, as in FIR design using window function. 

Step 2: Draw the unit circle and mark the points, if k-0,1…N-1. 
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1;k if   1*
3600

N
1   

Step 3: To find H(k), replace 
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Step 4: Find h(n) 

( ) j ;jH e        

Discuss the design procedure of FIR filters using frequency sampling method. [May/June-2013]    
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Design LPF which has the following specifications, N=7 using frequency sampling Technique. [Nov/Dec-2016][Nov/Dec-

15] 
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======================================================================= 

 

 

 

 

 

Solution: 

Step 1: 
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Find coefficient of LP FIR with N=15 and it has symmetric unit sample response. It satisfies the following condition. 
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(0) h(14) 0.05;  (1) h(3) 0.041;  (4) h(10) 0.1078h h h       

(2) h(12) 0.0666;   (3) h(11) 0.0365;  (5) h(9) 0.034h h h      

(6) h(8) 0.3188;   (7) 0.466h h  

Determine the coefficients {h (n)} of a linear phase FIR filter of length M =15 has a symmetric unit sample response and a frequency 

response that satisfies the condition (May/June-13) (April/May-11)(Nov/Dec-09) 
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The filter coefficients are given by 
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************************************************************************************* 

H.W:1. Design a linear phase FIR high pass filter using hamming window, with a cutoff frequency, ωc=0.8π 

rad/sample and   N=7.  

2. Design a FIR low pass filter with cutoff frequency of 1KHz and sampling frequency of 4 kHz with 11 samples 

using Fourier series method.  Determine the frequency responses and verify the design by sketching the 

magnitude responses 

3. Using a rectangular window technique design a low pass filter with pass band gain of unity, cutoff frequency of 1000Hz 

and working at a sampling frequency of 5kHz.the length of the impulse response should be 7.  

********************************************************************************************** 

Using frequency sampling method, design BPF with the following specifications. [May/June-2016] 

Sampling frequency F=8000Hz 

Cut off frequencies fc1=1000Hz 

Cut off frequencies fc2=3000Hz Determine the filter coefficients for N=7. 
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UNIT - IV FINITE WORD LENGTH EFFECTS IN DIGITAL FILTER 

 

 

 

 

 

Finite Word length Effects: 

 In the design of FIR Filters, The filter coefficients are determined by the system transfer functions. These 

filter co-efficient are quantized/truncated while implementing DSP System because of finite length registers. 

 Only Finite numbers of bits are used to perform arithmetic operations. Typical word length is 16 bits,               

24 bits, 32 bits etc. 

 This finite word length introduces an error which can affect the performance of the DSP system. 

 The main errors are 

1. Input quantization error 

2. Co-efficient quantization error 

3. Overflow & round off error (Product Quantization error) 

 The effect of error introduced by a signal process depend upon number of factors including the  

1. Type of arithmetic 

2. Quality of input signal 

3. Type of algorithm implemented 

1. Input quantization error 

 The conversion of continuous-time input signal into digital value produces an error which is known as 

input quantization error. 

 This error arises due to the representation of the input signal by a fixed number of digits in A/D 

conversion process. 

2. Co-efficient quantization error 

 The filter coefficients are compared to infinite precision. If they are quantized the frequency response of 

the resulting filter may differ from the desired frequency response.  

i.e poles of the desired filter may change leading to instability. 

3. Product Quantization error 

 It arises at the output of the multiplier 

 When a ‘b’ bit data is multiplied with another ‘b’ bit coefficient the product (‘2b’ bits) should be stored 

in ‘b’ bits register. The multiplier Output must be rounded or truncated to ‘b’ bits. This known as 

overflow and round off error. 

*****************************************************************************************

Types of number representation: 

There are two common forms that are used to represent the numbers in a digital or any other digital hardware. 

1. Fixed point representation 

2. Floating point representation 

* Explain the various formulas of the fixed point representation of binary numbers. 

1. Fixed point representation 

 In the fixed point arithmetic, the position of the binary point is fixed. The bit to the right represents the 

fractional part of the number and to those to the left represents the integer part. 

Fixed point and floating point number representation - ADC - quantization - truncation and rounding - 

quantization noise - input / output quantization - coefficient quantization error - product quantization error - 

overflow error - limit cycle oscillations due to product quantization and summation - scaling to prevent 

overflow. 
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 For example, the binary number 01.1100 has the value 1.75 in decimal. 

(0*21) + (1*20)  + (1*2-1)  + (1*2-2)  + (0*2-3) = 1.75 

In general, we can represent the fixed point number ‘N’ to any desired accuracy by the series  





2n

ni

i

i

i

rCN  

Where, r is called as radix. 

 If r=10, the representation is known as decimal representation having numbers from 0 to 9. In this 

representation the number  

285.30 



21

3

10
i

i

iC  

= (3*101 )+ (0*100)+ (2*10-1)+(8*10-2)+(5*10-3) 
 If r=2, the representation is known as binary representation with two numbers 0 to 1. 

 For example, the binary number 

110.010 = (1*22 ) + (1*21) + (0*20) + (0*2-1) + (1*2-2) + (0*2-3) = 6.25 

Examples: 

Convert the decimal number 30.275 to binary form 

      
   

 

(30.275)10 = (11110.01000110)2 

 

0.275 * 2 0.55 0 

0.55 * 2   1.10 1 

0.10 * 2   0.20 0 

0.20 * 2   0.40 0 

0.40 * 2   0.80 0 

0.80 * 2   1.60 1 

0.60 * 2   1.20 1 

0.20 * 2   0.40 0 

 

In fixed point arithmetic =, the negative numbers are represented by 3 forms. 

1. Sign-magnitude form 

2. One’s complement form 

3. Two’s complement form 

1.1 Sign-magnitude form: 

 Here an additional bit called sign bit is added as MSB. 

o If this bit is zero  It is a positive number 

o If this bit is one   It is a positive number 

 For example 

o 1.75 is represented as 01.110000.  

o -1.75 is represented as 11.110000 

1.2 One’s complement form: 

 Here the positive number is represented same as that in sign magnitude form. 

 But the negative number is obtained by complementing all the bits of the positive number 

 For eg: the decimal number -0.875 can be represented as 

o (0.875)10=(0.111000)2        

o (-0.875)10=(1.000111)2           0.111000 

↓ ↓↓↓↓↓↓  (Complement each bit) 

1.000111 
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1.3 Two’s complement form: 

 Here the positive numbers are represented as same in sign magnitude and one’s complement form.  

 The negative numbers are obtained by complementing all the bits of the positive number and adding 

one to the least significant bit 

(0.875)10=(0.111000)2  

                  ↓ ↓↓↓↓↓↓  (Complement each bit) 

                  1.000111 

+                 1 

      1.001000 

(-0.875)10=(1.001000)2 

Examples: 

 Find the sign magnitude, 1’s complement, 2’s complement for the given numbers.  

1. 
32

7
  

2. 
8

7
  

3. 
8

7
  

1. 
32

7
  

0.21875 * 2 0.43750 0 

0.43750 * 2 0.87500 0 

0.87500* 2  1.750000 1 

0.75* 2       1.50       1 

0.50* 2       1.00       1 

32

7
 =(-0.21875)10 =(1.00111)2 

Sign magnitude form = 1.00111  

1’s complement form = 1.11000 

2’s complement form = 1.11001 

2. 
8

7
  

0.875 * 2 1.75 1 

0.750 * 2 1.500 1 

0.500 * 2 1.000 1 

8

7
  =(-0.875)10 =(0.111)2 

Sign magnitude form = 0.111  

1’s complement form = 1.000 

2’s complement form = 1.001 

3. 
8

7
  

Sign magnitude form = 0.111  

1’s complement form = 0.111  

2’s complement form = 0.111  

Addition of two fixed point numbers: 

 Add (0.5)10 + (0.125)10 
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(0.5)10   =  (0.100)2 

(0.125)10  =   (0.001)2 

(0.101)2 = (0.625)10 

 Addition of two fixed point numbers causes an overflow. 

For example 

(0.100)2 

(0.101)2 

(1.001)2 = (-0.125)10 in sign magnitude form 

Subtraction of two fixed point numbers: 

 Subtraction of two numbers can be easily performed easily by using two’s complement representation. 

 Subtract 0.25 from 0.5 

0.25 * 2 0.50 0  Sign magnitude form = (0.010)2 

0.50 * 2 1.00 1  1’s complement form = (1.101)2 

0.00 * 2 0.00 0  2’s complement form = (1.110)2 

(0.5)10  =  (0.100)2 

-(0.25)10 =   (1.110)2 Two’s complement of -0.25 

(10.010)2  

Here the carry is generated after the addition. Neglect the carry bit to get the result in decimal. 

(0.010)2 = (0.25)10 

 Subtract 0.5 from 0.25 

0.5 * 2 1.00 1  Sign magnitude form = (0.100)2 

0.00 * 2 0.00 0  1’s complement form = (1.011)2 

0.00 * 2 0.00 0  2’s complement form = (1.100)2 

(0.25)10  =   (0.010)2   

 -(0.5)10  =  (1.100)2 

 (1.110)2  

Here the carry is not generated after the addition. So the result is negative. 

Multiplication in fixed point arithmetic: 

 Here the sign magnitude components are separated. 

 The magnitudes of the numbers are multiplied. Then the sign of the product is determined and applied to 

the result. 

 In the fixed point arithmetic, multiplication of two fractions results in a fraction. 

 For multiplications with fractions, overflow can never occur. 

 Eg: 

(0.1001)2 * (0.0011)2 = (0.00011011)2 

2. Floating point representation 

 Here, a number ‘x’ is represented by 

X=M.re 

Where, M  Mantissa which requires a sign bit for representing positive number and negative 

numbers. 

R   base (or) radix 

e   exponent which require an additional and it may be either positive or negative. 

o For eg, 278 can be represented in floating point representation.  

278 = 
1000

  1000  X  278 
 = 0.278*103 

0.278  Mantissa (M) 

10   base (or) radix (r) 

3   exponents (e) 
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 Similarly, to represent a binary floating point number 

X=M.2e
 in which the fractional part of a number should fall (or) lie in the range of 1/2 to 1. 

5 =
8

  8  X  5 
 0.625 X23  

Mantissa (M)  = 0.625 

Base (or) radix (r) = 2 

Exponent (e)  = 3 

 Some decimal numbers and their floating point representations are given below: 

4.5   0.5625 X 23 =0.1001 X 2011 

1.5   0.75 X 21 =0.1100 X 2001 

6.5   0.8125 X 23 =0.1100 X 2011 

0.625  0.625 X 20 =0.1010 X 2000 

 Negative floating point numbers are generally represented by considering the mantissa as a fixed point 

number. The sign of the floating point number is obtained from the first bit of mantissa. 

 To represent floating point in multiplication 

Consider 1

11

e
rMX   

2

22

e
rMX   

   21

2121 *
ee

rMMXX   

Example 

Given 12

1 10*5.3 X ,
6

2 10*75.4X . Find the product 21XX  

X=(3.5 X 4.75) 10(-12+6) 

    = (16.625)10-6  
 in decimal 

In binary: (1.5)10 X (1.25)10 = (210.75) X (210.625) 

    = 2001 X 0.1100 X 2001 X 0.1010 

    = 2010 X 0.01111 

Addition and subtraction: 

 Here the exponent of a smaller number is adjusted until it matches the exponent of a larger number. 

 Then, the mantissa are added or subtracted 

 The resulting representation is rescaled so that its mantissa lies in the range 0.5 to 1. 

 Eg: Add (3.0)10 & (0.125)10 

(3.0)10  =2010 X 0.1100 = 1er X 1M  

(0.125)10 =2000 X 0.0010 = 2e
r X 2M  

Now adjust e2 Such that e1=e2 

(0.125)10 =2010 X 0.0000100 

Addition 2010 (0.110000  + 0.0000100) 2010 X 0.110010 

Subraction 2010 X 1.001101 

Compare floating point with fixed point arithmetic. 

Sl.No Fixed point arithmetic Floating point arithmetic 

1 Fast operation Slow operation 

2 Relatively economical More expensive because of costlier hardware 

3 Small dynamic range Increased Dynamic range 

4 Round off errors occurs only for 

addition 

Round off errors can occur with addition and 

multiplication 

5 Overflow occur in addition Overflow does not arise 

6 Used in small computers Used in large general purpose computers. 

*************************************************************************************** 
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Quantization: 

*Discuss the various methods of quantization. 

*Derive the expression for rounding and truncation errors  

* Discuss in detail about Quantization error that occurs due to finite word length of registers.  

The common methods of quantization are  

1. Truncation 

2. Rounding 

1. Truncation 

 The abrupt termination of given number having a large string of bits (or)  

 Truncation is a process of discarding all bits less significant than the LSB that is retained. 

 Suppose if we truncate the following binary number from 8 bits to 4 bits, we obtain  

 0.00110011 to 0.0011 

            (8 bits)            (4 bits) 

 1.01001001 to 1.0100 

            (8 bits)    (4 bits) 

 When we truncate the number, the signal value is approximated by the highest quantization level that is 

not greater than the signal. 

2. Rounding (or) Round off 

 Rounding is the process of reducing the size of a binary number to finite word size of ‘b’ bits such that 

the rounded b-bit number is closest to the original unquantised number. 

Error Due to truncation and rounding: 

 While storing (or) computation on a number we face registers length problems. Hence given number is 

quantized to truncation (or) round off. 

i.e. Number of bits in the original number is reduced register length. 

Truncation error in sign magnitude form: 

 Consider a 5 bit number which has value of  

0.110012  (0.7815)10 

 This 5 bit number is truncated to a 4 bit number 

0.11002  (0.75)10 

i.e. 5 bit number 0.11001 has ‘l’ bits 

 4 bit number 0.1100   has ‘b’ bits 

 Truncation error, et =  0.1100 – 0.11001 

= -0.00001  (-0.03125)10 

 Here original length is ‘l’ bits. (l=5). The truncated length is ‘b’ bits. 

 The truncation error, et =   2-b-2-l 

= -(2-l-2-b) 

et   = -(2-5-2-4)  = -2-1 

 The truncation error for a positive number is  

 lb   22  te 0   Non causal 

 The truncation error for a negative number is  

0 te   lb   22    Causal 

Truncation error in two’s complement: 

 For a positive number, the truncation results in a smaller number and hence remains same as in the case 

of sign magnitude form. 

 For a negative number, the truncation produces negative error in two’s complement  

 lb   22    te     lb   22  
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Round off error (Error due to rounding): 

 Let us consider a number with original length as ‘5’ bits and round off length as ‘4’ bits. 

0.11001    tooff Round  0.1101 

 Now error due to rounding 
re =

2

22 lb  
 

Where  bNumber of bits to the right of binary point after rounding 

LNumber of bits to the right of binary point before rounding 

 Rounding off error for positive Number: 

2

22 lb  
 

re 0 

 Rounding off error for negative Number: 

     0
re 

2

22 lb  
 

 For two’s complement 

 
2

22 lb  
 

re 
2

22 lb  
 

*************************************************************************************** 

Quantization Noise: 

*Derive the expression for signal to quantization noise ratio 

*What is called Quantization Noise? Derive the expression for quantization noise power. 

 

 The analog signal is converted into digital signal by ADC 

 At first, the signal x(t) is sampled at regular intervals t=nT, where n=0,1,2… to create sequence x(n). 

This is done by a sampler. 

 Then the numeric equivalent of each sample x(n) is expressed by a finite number of bits giving the 

sequence xq(n) 

 The difference signal e(n)= xq(n)- x(n) is called quantization noise (or) A/D conversion noise. 

 Let us assume a sinusoidal signal varying between +1 & -1 having a dynamic range 2 

 ADC employs (b+1) bits including sign bit. In this case, the number of levels available for quantizing 

x(n) is 2b+1. 

 The interval between the successive levels is 

q 
12

2
b
 b2  

Where q  quantization step size 

If b=3 bits, then q=2-3=0.125  

*************************************************************************************** 

Quantization Noise power:  

Input Quantization error: 

*Derive the equation for quantization noise power (or) Steady state Input Noise Power. 
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Probability density function for round off error in A/D conversion is 

 

 

 

 

If rounding is used for quantization, which is bounded by  
22

q
ne

q
 , then the error lies between           

2

q
 to 

2

q
with equal probability, where q quantization step size.

  

Properties of analog to digital conversion error, e(n): 

1. The error sequence e(n) is a sample sequence of a stationary random process. 

2. The error sequence is uncorrelated with x(n) and other signals in the system. 

3. The error is a white noise process with uniform amplitude probability distribution over the range of 

quantization error. 

The variance of e(n) is given by 

     neEneEe

222 
 

---------------------------->(1) 

Where   neE 2
Average of e2(n)  

  neE Mean value of e(n). 

For rounding, e(n) lies between 
2

q
 and 

2

q
with equal probability 

      




 deepneneE 22 ---------------------------->(2) 

  ,
1

q
ep   

22

q
ne

q
 ---------------------------->(3) 

Substituting (3) in (2) 

    



2

2

22 1

q

q

de
q

neneE  

    



2

2

22 1

q

q

dene
q

neE ------------------------------->(4) 

   0neE   

   02 neE ------------------------------------------->(5) 

Substituting (4) and (5) in (1) 

  0
1 2

2

22  


q

q

e dene
q
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1 qq

q
 

       



























883

1 33 qq

q
 

       



























883

1 33 qq
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2

3

1 3q

q
 

12

2
2 q
e  ------------------------------------------------->(6) 

In general,    qb

b
 2

2

1
-------------------------------------------->(7) 

 
12

2
2

2
b

e



  

12

2 2
2

b

e



 ----------------------------------------------->(8) 

Equation (8) is known as the steady state noise power due to input quantization. 

b

R
q

2
    in two’s complement representation. 

12 


b

R
q    in sign magnitude (or) one’s complement representation. 

          R              Range of analog signal to be quantized. 

Steady state Output Noise power: 

 

After quantization, we have noise power 
2

e as input noise power. Therefore, Output noise power of system is 

given by 

 







 



0

222

n

eeo nh ------------------------------------>(9) 

 
where  h(n)  impulse response of the system. 

Let error E(n) be output noise power due to quantization 

Error          nhnenE   

              





0k

knenh  
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The variance of error E(n) is called output noise power, 2

e . 

By using Parseval’s theorem, 

2

eo

 

 





0

22

n

e nh  

2

e    


z

dZ
ZHZH

j

1

2

1


 

Where the closed contour integration is evaluated using the method of residue by taking only the poles that 

lie inside the unit circle. 

Z transform of h(n),       n

n

znhZH 





0

 

Z transform of h2(n) = Z[h2(n)]           n

n

znh 





0

2     n

n

znhnh 





0

-------------------->(10) 

By Inverse Z transform,        
 dZZZH

j
nh n 1

2

1


-------------------------------->(11) 

Substituting (11) in (10) 

          n

n

nn

n

znhdZZZH
j

znh 









  
0

1

0

2

2

1


 

                  













 dZZnhZH
j n 0

1

2

1


 

                                                            



















n
nn Z

dZ
ZnhZH

j
nh

0

1

0

2

2

1


 

                                







 





 dZZZnhZH
j n

n 1

0

1

2

1


 

        

      





Z

dZ
ZHZH

j
nh

n

1

0

2

2

1


----------------------------------->(12) 

Substituting (12) in (9) 

                  

    







 

 dZZZHZH
j

eeo

1122

2

1




 

Problem:  

The output signal of an A/D converter is passed through a first order low pass filter, with transfer 

function given by 

 
1.a0for   

az

za
zH 






1
)(   Find the steady state output noise power due to quantization at the 

output of the digital filter. [Nov/Dec-2015] 

Solution: 
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j
 

have  we(1), equation in H(z  and H(z)   ngSubstituti

az

za
H(z       

az

za1
H(z)     Given

dzzzHzH
j

1

1

22

1

1

12
2

1

1

1122
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1

)(2

)

1
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e

    Where

a

a

az

a
    

azaz

za
az     

 
a

z atzH(z H(z) of residue a  z atzH(z H(z) of residue      









































































 

************************************************************************************** 

Find the steady state variance of the noise in the output due to quantization of input for the first order 

filter.  [Apr/May’11] [Nov/Dec-2016]   
 

Solution: 

The impulse response for the above filter is given by  

 

Taking Z-transform on both sides we have 

   

We know 

  

 

 

 

( ) ( 1) ( )y n ay n x n  

( ) ( )nh n a u n

2 2 2

0

2 2

0

2 2 4

2
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1

1

2 1
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a
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z
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2 2 1 1

1
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1
2 2

1

1
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1

2

1

2 ( )( )

e

c

e

c

e

c

H z H z z dz
j

Substituting H z and H z value in the above equation we get

z z
z dz

j z a z a

z
dz

j z a z a
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*************************************************************************************** 

The output of the A/D converter is applied to a digital filter with the system function  

 
72.0

45.0




Z

Z
ZH

 

Find the output noise power of the digital filter, when the input signal is quantized to 7 bits. 

Given: 

 
72.0

45.0




Z

Z
ZH

 

Solution: 

  
    11  ZZHZH

 

1

1

1

72.0

45.0

72.0

45.0 











 Z
Z

Z

Z

Z

 

  












72.0
1

72.0

45.0 12

Z
Z

Z

 

  






 





Z

Z
Z

Z

72.01
72.0

2025.0 1

 

  












72.0

1
72.0

2025.0 1

ZZ

ZZ

 

  3889.172.0

28125.0






ZZ  

Now the poles of H(Z)H(Z-1)Z-1 are p1=0.72 , p2=1.3889 

Output noise power due to input quantization 

    







 

 dZZZHZH
j

eeo

1122

2

1




 

                
ipz

N

i

e ZZHZHs



1

112 Re
 

                 
ipz

N

i

e ZZHZHs



1

112 Re  

Where p1,p2,…..pn are the poles of H(Z)H(Z-1) Z-1 that lies inside the unit circle in z-plane. 
     

 
 

 
  

72.0

22

3889.172.0

28125.0
72.0







Z

eeo
ZZ

Z  

        
3889.172.0

28125.02




 e  

                                                                   

24205.0 e
 

***************************************************************************************
 

Consider the transfer function )()()( 21 zHzHzH  where 
1

2

21

1

1
1

1
)(

1

1
)(
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zH and 
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zH  

1
2 2

1 2
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1
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Find the output round off noise power. Assume 6.05.0 21    and  and find output round off noise 

power. 
Solution: 

The round off noise model for )()()( 21 zHzHzH  is given by, 

From the realization we can find that the noise transfer function seen by noise source e1(n) is H(z), where, 

  

 
)2(

1

1
)(

,)(,

)1(
11

1
)(

1

2

2

1

2

1

1















za
zH

is neby   seenfunctiontransfer  noise the Whereas

zaza
zH

2  

The total steady state noise variance can be obtained, we have 
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If a1 and a2 are less than the poles z=1/a1 and z=1/a2 lies outside of the circle .1z So, the residue of H(z) H(z-1) z-

1at z=1/a1 and z=1/a2 are zero. Consequently we have, 
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In the same way, 
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The steady state noise power for 6.0,5.0 21  aa is given by 
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5.06.016.015.01
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************************************************************************************* 

Draw the quantization noise model for a second order system
221cos21

1
)(

 


zrzr
zH


 and find the 

steady state output noise variance. 

Solution: 

Given:   

          
221cos21

1
)(

 


zrzr
zH


 

The quantization noise model is, 

 we know,    
2

02

2

01

2

0    

Both noise sources see the same transfer function 

221cos21

1
)(

 


zrzr
zH


 

The impulse response of the transfer function is given by 

)(
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n
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Now the steady state output noise variance is, 
2

02

2

01

2

0    

But 





n

e us gives  whichnh ),(222

02

2

01   



Unit 4- Finite Word Length Effects       Page No 15 

 

  

   
  

 
  422

22

422

2

2

2

42

2

22

2

22

2

22

2

22

2

)1(2

0

2)1(2

0

2

22

2

0

2

0

2

2

2

0

2

2

2

0
2

2
2

2
2

0

2cos211

1

6

2

2cos211

2cos11

sin2

1

6

2

2cos21

2cos

1

1

sin2

1

6

2

112

1

1

1

sin2

1

6

2

2

1

1

1

sin2

1

6

2

)1(2cos
sin2

1

6

2

12cos1
sin2

1

12

2
.2

sin

)1(sin

12

2
.2

rrr

r
     

rrr

r
    

rr

r

r
     

er

e

er

e

r
      

erer
r

       

nrr       

2sin1cos2             nr       

n
r

b

b

b

j

j

j

jb

nj

n

nnj

n

n
b

n

n

n

n
b

2

n

n
b

n

n
b






























































































































































































 

****************************************************************************** 

Co-efficient quantization error 

 We know that the IIR Filter is characterized by the system function 
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 After  quantizing , 
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Where   
qka  kk aa   

 
qkb  kk bb   

 The quantization of filter coefficients alters the positions of the poles and zeros in z-plane. 

1.  If the poles of desired filter lie close to the unit circle, then the quantized filter poles may lie outside 

the unit circle leading into instability of filter. 

2. Deviation in poles and zeros also lead to deviation in frequency response. 

***************************************************************************************
 Consider a second order IIR filter with  find the effect on quantization 

on pole locations of the given system function in direct form and in cascade form. Take b=3bits.

 [Apr/May-10] [Nov/Dec-11]   

Solution: 

Given that, 

 

1 1

1.0
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(1 0.5 )(1 0.45 )
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The roots of the denominator of H(z) are the original poles of H(z). let the original poles of H(z) be p1 and 

p2. 

Here p1=0.5 and p2=0.45          

 

Direct form I: 

 

 

Let us quantize the coefficients by truncation. 

 Convert to  Truncate to  Convert to 

.9510   .11112   .1112          .87510 

 Binary      3-bits   decimal 

Convert to  Truncate to  Convert to 

.22510   .00112   .0012          .12510 

 Binary      3-bits   decimal 

Let be the transfer function of the IIR system after quantizing the coefficients. 

 

On cross multiplying the above equation we get, 

 

Cascade form: 

Given that  

 

  

In cascade realization the system can be realized as cascade of first order sections. 

H(z)=H1(z)+H2(z)  

Where, 

 
Let us quantize the coefficients of H1(z) and H2(z) by truncation. 
Convert to  Truncate to  Convert to 

.510   .10002   .1002          .510 

 Binary      3-bits   decimal 

Convert to  Convert to  Convert to 

.4510   .01112   .0112          .37510 

 Binary      3-bits   decimal 

let ,  be the transfer function of the first-order sections after quantizing the coefficients. 

1 1 1
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*************************************************************************************** 

Round off effects and overflow in digital filter: 

*Explain in detail about round off effects in digital filters. 

 The presence of one or more quantizer in the realization of a digital filter results in a non-linear device. 

i.e. recursive digital filter may exhibit undesirable oscillations in its output 

 In the finite arithmetic operations, some registers may overflow if the input signal level becomes large. 

 These overflow represents non-linear distortion leading to limit cycle oscillations 

 There are two types of limit cycle oscillations which includes 

1. Zero input limit cycle oscillations (Low amplitude compared to overflow limit cycle oscillations) 

2. Over flow limit cycle oscillations. 

Zero input limit cycle oscillations 

 The arithmetic operations produces oscillations even when the input is zero or some non zero constant 

values. Such oscillations are called zero input limit cycle oscillations. 

Overflow limit cycle oscillations 

 The limit cycle occurs due to the overflow of adder is known as overflow limit cycle oscillations. 

Dead Band: 

             The limit cycle occurs as a result of quantization effect in multiplication. The amplitude of the 

output during a limit cycle is confined to a range of values called the dead band of the filter. 
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The dead band of the filter for the limit cycle oscillations are 
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************************************************************************************** 

Problem: Consider a 1st order FIR system equation )1()()(  naynxny with  



 


otherwise    ,          

0n        ,
nx

0

875.0
)(  

Find the limit cycle effect and the dead band. Assume b=4 and a=0.95. (Nov/Dec-12)(Nov/Dec-15) 

[May/June-2016] 

Solution: 

Given:  



 


otherwise    ,          

0n        ,
nx

0

875.0
)(  

   
625.0

95.012

2

12

4










a

2
band Dead

b

 

)1(95.0)()(  nynxny  

n x(n) )1( ny  )1( nay  
 )1( nayQ  

(round off to 4-bits) 
 )1()()(  nayQnxny  

0 0.875 0 0 0.0000 y(0)=0.875 

1 0 0.875 

      

 

 
2

10

11010.0

0.83125

0.95*0.875



  
 

8125.0

1101.0 2




 y(1)=0.8125 

2 0 0.8125 

     

 

 
2

10

110001.0

0.77187

0.95*0.8125



  
 

75.0

1100.0 2




 75.0)2( y  

3 0 0.75 

      

 

 
2

10

1011011.0

0.7125

0.95*0.75



  
 

6875.0

1011.0 2




 6875.0)3( y  

4 0 0.6875 

     

 

 
2

10

101001.0

0.653125

0.95*0.6875



  
 

625.0

1010.0 2




 625.0)4( y  

5 0 0.625 

      

 

 
2

10

10011.0

0.59375

0.95*0.625



  
 

625.0

1010.0 2




 625.0)5( y  

6 0 0.625 

      

 

 
2

10

10011.0

0.59375

0.95*0.625



  
 

625.0

1010.0 2




 625.0)6( y  

Conclusion:  
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                    The dead band of the filter is 0.625. When 5n the output remains constant at 0.625 causing 

limit cycle oscillations. 

***************************************************************************************
 

Overflow Limit cycle oscillations: 

*What are called overflow oscillations? How it can be prevented? 

 We know that the limit cycle oscillation is caused by rounding the result of multiplication. 

 The limit cycle occurs due to the overflow of adder is known as overflow limit cycle oscillations.\ 

 Several types of limit cycle oscillations are caused by addition, which makes the filter output oscilate 

between maximum and minimum amplitudes. 

 Let us consider 2 positive numbers n1 & n2 

n1=0.1117/8 

n2=0.1106/8 

n1 + n2=1.101-5/8 in sign magnitude form. 

The sum is wrongly interpreted as a negative number. 

 The transfer characteristics of an saturation adder is shown in fig below  

 where  n   The input to the adder  

 f(n)  The corresponding output 

 
   Saturation adder transfer characteristics 

 From the transfer characteristics, we find that when overflow occurs, the sum of adder is set equal to the 

maximum value.  

*************************************************************************************** 

Signal Scaling: 

 

 

 Saturation arithmetic eliminates limit cycles due to overflow, but it causes undeniable signal distortion 

due to the non linearity of the clipper. 

 In order to limit the amount of non linear distortion, it is important to scale input signal and unit sample 

response between input and any internal summing node in the system to avoid overflow. 

 
Realization of a second order IIR Filter 

 Let us consider a second order IIR filter as shown in the above figure. Here a scale factor S0 is 

introduced between the input x(n) and the adder 1 to prevent overflow at the output of adder 1. 

*Explain how reduction of round-off errors is achieved in digital filters. [Nov/Dec-2016] 
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 Now the overall input-output transfer function is  

Now the transfer function 

          

From figure 

 

 

Using Schwartz inequality 

 

Applying parsevals theorem 

 

By substituting all values 

 

 
Which gives us, 
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Where I=  

 
Note: 

 Because of the process of scaling, the overflow is eliminated. Here so is the scaling factor for the first 

stage. 

 Scaling factor for the second stage = S01 and it is given by 
2

2

0

2

01

1

IS
S   

Where 
   
   

dZ
ZDZD

ZZHZH

j
I

c

 




1

22

11

11
2

2

1


 

********************************************************************************************

 

For the given transfer function,  
1

1

5.01

7.025.0









Z

Z
ZH , find scaling factor so as to avoid overflow in 

 
   the adder ‘1’ of the filter. 

 
Given: 

D(Z) = 1-0.5Z-1 

D(Z-1) = 1-0.5 Z 

Solution: 

I  
    Z

dZ

ZDZDj
c

 


1

1

2

1


 

      
   Z

dZ

ZZj
c

 


 5.015.01

1

2

1
1

 

     
    Z

dZ

ZZ

Z

j
c

 


5.01

1

5.02

1


 

Residue of 
   

0
5.01

1

5.0
5.0




Z
ZZ

Z

 

I=1.3333 

0S =
I

1

 

2

0
1 1

1

1

2

0

1
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( ) ( ) z d

2

1

1

2 ( ) ( )

1

c

c

S
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j

z dz

j D z D z
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0S =
333.1

1

 

     = 0.866 

*************************************************************************************** 

Consider the recursive filter shown in fig. The input x(n) has a range of values of ±100V, represented 

by 8 bits. Compute the variance of output due to A/D conversion process. (6)                                                                         

 
Solution: 

Given the range is ±100V  

The difference equation of the system is given by , whose impulse response h(n) 

can be obtained as 

  

  

 

 
 

*************************************************************************************** 

The input to the system y(n)=0.999y(n-1)+x(n) is applied to an ADC. What is the power produced by 

the quantization noise at the output of the filter if the input is quantized to a) 8 bits b)16 bits. May-07 

Solution: 

y(n)=0.999y(n-1)+x(n)          

Taking z-transform on both sides 

Y(z)=0.999z-1Y(z)+X(z) 

  

 

( ) 0.8 ( 1) ( )y n y n x n  

8

( ) (0.8) ( )

.

200

2

0.78125

nh n u n

rangeof the signal
quantization step size

No of quantization levels









2
2

2

2

12
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0.05086

e

e

Variance of the error signal
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2 2 2
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2
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2
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0.05086
0.14128

1 (0.8)
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Variance of output
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1
1 1 1

1

1

( ) ( ) ( )( )
0.999 0.999

1
( 0.999)( 0.999)( )

0.999

0.001

( 0.999)( 0.001)

z z
H z H z z z

z z

z

z z

z z


  






 



  




 

 

 

Where p1,p2,……pN are poles of H(z)H(z-1)z-1, that lies inside the unit circle in z-plane. 

 

a) b+1=8 bits(Assuming including sign bit)       

 

b) b+1=16 bits           

  

*************************************************************************************** 

Find the effect of coefficient quantization on pole locations of the given second order IIR system, when 

it is realized in direct form I and in cascade form. Assume a word length of 4 bits through truncation. 

 

Solution: 

Direct form I 

Let b=4 bits including a sign bit 

2 2 1 1

2 1 1

1

2 1 1

1

1
( ) ( )

2

Re ( ) ( )

( ) ( ) ( )

i

i

eoi e
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e
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i z p

output noise power due
H z H z z dz

to input quantization j

s H z H z z

z p H z H z z
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2
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eoi e
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e

z
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2(7)
2 32

(500.25) 2.544 10
12


  

2(15)
2 82

(500.25) 3.882 10
12


  

1 2

1
( )

1 0.9 0.2
H z

z z 
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After truncation we get 

(0.111)2=(0.875)10 

(0.2)10=(0.00110…)2 

         

After truncation we get 

(0.001)2=(0.125)10 

The system function after coefficient quantization is  

 

Now the pole locations are given by 

z1=0.695 

z2=0.178 

If we compare the Poles of H(z) and we can observe that the poles of deviate very much from 

the original poles. 

Cascade form 

          

After truncation we get  

10 2(0.9) (0.111001...)

0.9 2

1.8

1

0.8 2

1.6

1

0.6 2
1

1.2

0.2 2

0.4

0

0.4 2

0.8

0

0.8 2

1.6

1

Integer part

















10

0.2 2
(0.2)
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0.4 2
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0.8 2
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0.6 2
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1

0.2 2

0.4

0














1 2

1
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1 0.875 0.125
H z

z z 


 

( )H z ( )H z

1 1

10 2

1
( )

1 0.5 (1 0.4 )

(0.5) (0.1000)

H z
z z 
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(0.100)2=(0.5)10 

After truncation we get  

(0.011)2=(0.375)10 

          

(0.4)10=(0.01100…)2 

The system function after coefficient quantization is 

 

The pole locations are given by 

z1=0.5 

z2=0.375 

on comparing the poles of the cascade system with original poles we can say that one of the poles is same 

and other pole is very close to original pole. 

*************************************************************************************** 

A LTI system is characterized by the difference equation y(n)=0.68y(n-1)+0.5x(n).  

The input signal x(n) has a range of -5V to +5V, represented by 8-bits. Find the quantization step size, 

variance of the error signal and variance of the quantization noise at the output.  

Solution:  

Given 

Range R=-5V to +5V = 5-(-5) =10  

Size of binary, B= 8 bits (including sign bit) 

Quantization step size,  

    

The difference equation governing the LTI system is 

Y (n) =0.68y (n-1) +0.15x (n) 

On taking z transform of above equation we get 

10

0.4 2
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0.8 2
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q
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Now, poles of H (z) H (z-1) z-1 are p1=0.68, p2=1.4706 

Here, p1=0.68 is the only pole that lies inside the unit circle in z-plane 

Variance of the input quantization noise at the output. 
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Analog to digital conversion: 

10. Explain the ADC and DAC in detail.  

A/D conversion has three process. 

       
Basic parts of an analog-to digital (A/D) converter 

 

1. Sampling 

 Sampling is the conversion of a continuous- tome signal into a discrete-time signal obtained by taking 

the samples of continuous-time signal at discrete instants.  

 Thus if xa(t) is the input to the sampler, the output is xa(nT)≡x(n), where T is called the sampling 

interval. 

2. Quantisation 

 The process of converting a discrete-time continuous amplitude signal into digital signal is called 

quantization. 

 The value of each signal sample is represented by a value selected from a finite set of possible values. 

 The difference between the unquantised sample x(n) and the quantized output xq(n) is called the 

quantization error or quantization noise.  

eq(n)= xq(n)-x(n) 

 To eliminate the excess bits either discard them by the process of truncation or discard them by rounding 

the resulting number by the process of rounding. 

 The values allowed in the digital signals are called the quantization levels 

 The distance ∆ between two successive quantization levels is called the quantization step size or 

resolution. 

 The quality of the output of the A/D converter is measured by the signal-to-quantization noise ratio. 

3. Coding 

 In the coding process, each discrete value xq(n) is represented by a b-bit binary sequence. 

 
  Block diagram of basic elements of an A/D Converter 

Digital to analog conversion: 

 To convert a digital signal into an analog signal, digital to analog converters are used. 
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Basic operations in converting a digital signal into an analog signal 

 The D/A converter accepts, at its input, electrical signals that corresponds to a binary word, and 

produces an output voltage or current that is proportional to the value of the binary word. 

 The task of D/A converter is to interpolate between samples. 

 The sampling theorem specifies the optimum interpolation for a band limited signal. 

 The simplest D/A converter is the zero order hold which holds constant value of sample until the next 

one is received. 

 Additional improvement can be obtained by using linear interpolation to connect successive samples 

with straight line segment.  

 Better interpolation can be achieved y using more sophisticated higher order interpolation techniques. 

 Suboptimum interpolation techniques result in passing frequencies above the folding frequency. Such 

frequency components are undesirable and are removed by passing the output of the interpolator through 

a proper analog filter which is called as post filter or smoothing filter. 

 Thus D/A conversion usually involve a suboptimum interpolator followed by a post filter. 

***************************************************************************************

    


